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Abstract

The Northern Rockies Adaptation Partnership (NRAP) identified climate change issues relevant to resource
management in the Northern Rockies (USA) region, and developed solutions intended to minimize negative effects
of climate change and facilitate transition of diverse ecosystems to a warmer climate. The NRAP region covers 183
million acres, spanning northern Idaho, Montana, northwestern Wyoming, North Dakota, and northern South Dakota,
and includes 15 national forests and 3 national parks across the U.S. Forest Service Northern Region and adjacent
Greater Yellowstone Area. U.S. Forest Service scientists, resource managers, and stakeholders worked together
over 2 years to conduct a state-of-science climate change vulnerability assessment and develop adaptation options
for national forests and national parks in the Northern Rockies region. The vulnerability assessment emphasized

key resource areas—water, fisheries, wildlife, forest and rangeland vegetation and disturbance, recreation, cultural
heritage, and ecosystem services—regarded as the most important for local ecosystems and communities. Resource
managers used the assessment to develop a detailed list of ways to address climate change vulnerabilities through
management actions. The large number of adaptation strategies and tactics, many of which are a component of
current management practice, provide a pathway for slowing the rate of deleterious change in resource conditions.

Keywords: adaptation, climate change, ecological disturbance, climate-smart resource management, Northern
Rocky Mountains, vulnerability assessment
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Summary

The Northern Rockies Adaptation Partnership (NRAP) is a science-management partnership consisting of 15 national
forests in the Northern Region of the Forest Service, U.S. Department of Agriculture (USFS); 3 national parks; the
USFS Pacific Northwest and Rocky Mountain Research Stations; the University of Washington; and numerous other
organizations and stakeholders. These organizations worked together over a period of 2 years to identify climate
change issues relevant to resource management in the Northern Rocky Mountains (USA) and to find solutions that
can minimize negative effects of climate change and facilitate transition of diverse ecosystems to a warmer climate.
The NRAP provided education, conducted a climate change vulnerability assessment, and developed adaptation
options for national forests and national parks that manage more than 28 million acres in northern Idaho, Montana,
northwestern Wyoming, North Dakota, and northern South Dakota.

Global climate models project that the Earth’s current warming trend will continue throughout the 21St century in the
Northern Rockies. Compared to observed historical temperature, average warming across the five NRAP subregions
is projected to be about 4 to 5 °F by 2050, depending on greenhouse gas emissions. Precipitation may increase
slightly in the winter, although the magnitude is uncertain.

Climatic extremes are difficult to project, but they will probably be more common, driving biophysical changes in
terrestrial and aquatic ecosystems. Droughts of increasing frequency and magnitude are expected in the future,
promoting an increase in wildfires, insect outbreaks, and nonnative species. These periodic disturbances, will rapidly
alter productivity and structure of vegetation, potentially altering the distribution and abundance of dominant plant
species and animal habitat.

Highlights of the vulnerability assessment and adaptation options for the Northern Rockies include the following:

Water resources and infrastructure

+  Effects: Decreasing snowpack and declining summer flows will alter timing and availability of water supply,
affecting agricultural, municipal, and public uses in and downstream from national forests, and affecting other
forest uses such as livestock, wildlife, recreation, firefighting, road maintenance, and instream fishery flows.
Declining summer low flows will affect water availability during late summer, the period of peak demand (e.g.,
for irrigation and power supply). Increased magnitude of peak streamflows will damage roads near perennial
streams, ranging from minor erosion to extensive damage, thus affecting public safety, access for resource
management, water quality, and aquatic habitat. Bridges, campgrounds, and national forest facilities near
streams and floodplains will be especially vulnerable, reducing access by the public.

+ Adaptation options: Primary adaptation strategies to address changing hydrology in the Northern Rockies include
restoring the function of watersheds, connecting floodplains, reducing drainage efficiency, maximizing valley
storage, and reducing hazardous fuels. Tactics include adding wood to streams, restoring beaver populations,
modifying livestock management, and reducing surface fuels and forest stand densities. Primary strategies for



infrastructure include increasing the resilience of stream crossings, culverts, and bridges to higher peakflows and
facilitating response to higher peakflows by reducing the road system and disconnecting roads from streams.
Tactics include completing geospatial databases of infrastructure (and drainage) components, installing higher
capacity culverts, and decommissioning roads or converting them to alternative uses. It will be important to

map aquifers and alluvial deposits, improve monitoring to provide feedback on water dynamics, and understand
the physical and legal availability of water for aquifer recharge. Erosion potential to protect water quality can

be addressed by reducing hazardous fuels in dry forests, reducing nonfire disturbances, and using road
management practices that prevent erosion.

Fisheries

Effects: Decreased snowpack will shift the timing of peakflows, decrease summer low flows, and in combination
with higher air temperature, increase stream temperatures, all of which will reduce the vigor of cold-water fish
species. Abundance and distribution of cutthroat trout and especially bull trout will be greatly reduced, although
effects will differ by location as a function of both stream temperature and competition from nonnative fish
species. Increased wildfire will add sediment to streams, increase peakflows and channel scouring, and raise
stream temperature by removing vegetation.

Adaptation options: Primary strategies to address climate change threats to coldwater fish species include
maintaining or restoring functionality of channels and floodplains to retain (hence, to cool) water and buffer
against future changes, decreasing fragmentation of stream networks so aquatic organisms can reach similar
habitats, and developing wildfire use plans that address sediment inputs and road failures. Adaptation tactics
include using watershed analysis to develop integrated actions for vegetation and hydrology, protecting
groundwater and springs, restoring riparian areas and beaver populations to maintain summer baseflows,
reconnecting and increasing off-channel habitat and refugia, identifying and improving stream crossings that
impede fish movement, decreasing road connectivity, and revegetating burned areas to store sediment and
maintain channel geomorphology. Removing nonnative fish species and reducing their access to cold water
habitat reduces competition with native fish species.

Forest vegetation

Effects: Increasing air temperature, through its influence on soil moisture, is expected to cause gradual changes
in the abundance and distribution of tree, shrub, and grass species throughout the Northern Rockies, with

more drought-tolerant species becoming more competitive. The earliest changes will be at ecotones between
lifeforms (e.g., upper and lower treelines). Ecological disturbance, including wildfire and insect outbreaks, will

be the primary facilitator of vegetation change, and future forest landscapes may be dominated by younger age
classes and smaller trees. High elevation forests will be especially vulnerable if disturbance frequency increases
significantly. Increased abundance and distribution of nonnative plant species, as well as the legacy of past land
uses, create additional stress for regeneration of native forest species.

Adaptation options: Most strategies for conserving native tree, shrub, and grassland systems focus on increasing
resilience to chronic low soil moisture (especially extreme drought and low snowpack), and to more frequent
and extensive ecological disturbance (wildfire, insects, nonnative species). These strategies generally include
managing landscapes to reduce the severity and patch size of disturbances, encouraging fire to play a more
natural role, and protecting refugia where fire-sensitive species can persist. Increasing species, genetic, and
landscape diversity (spatial pattern, structure) is an important “hedge your bets” strategy that will reduce the

risk of major forest loss. Adaptation tactics include using silvicultural prescriptions (especially stand density
management) and fuels treatments to reduce fuel continuity, reducing populations of nonnative species,
potentially using multiple genotypes in reforestation, and revising grazing policies and practices. Rare and
disjunct species and communities (e.g., whitebark pine, quaking aspen) require adaptation strategies and tactics
focused on encouraging regeneration, preventing damage from disturbance, and establishing refugia.

Rangeland vegetation

Effects: A longer growing season is expected to increase net primary productivity of many rangeland types,
especially those dominated by grasses, although responses will depend on local climate and soil conditions.
Elevated atmospheric carbon dioxide may increase water use efficiency and productivity of some species. In
many cases, increasing wildfire frequency and extent will be particularly damaging for big sagebrush and other
shrub species that are readily killed by fire. The widespread occurrence of cheatgrass and other nonnative
species facilitates frequent fire through annual fuel accumulation. In montane grasslands, wildfire may kill
Douglas-fir and other species that have recently established in rangelands through fire exclusion. Shrub species
that sprout following fire may be very resilient to increased disturbance, but may be outcompeted by more
drought-tolerant species over time.



+  Adaptation options: Adaptation strategies for rangeland vegetation focus on increasing resilience of rangeland
ecosystems, primarily through control and prevention of invasion by nonnative species. Ecologically based
management of nonnative plants focuses on strategies to repair damaged ecological processes that facilitate
invasion, and seeding of desired native species can be done where seed availability and dispersal of these
species are low. Proactive management to prevent establishment of nonnative species is also critical (early
detection-rapid response), including tactics such as weed-free policies, education of employees and the public,
and collaboration among multiple agencies to control weeds. Livestock grazing can also be managed through
the development of site-specific indicators that inform livestock movement guides and allow for maintenance and
enhancement of plant health.

Wildlife

+  Effects: Few data exist on the direct effects of climatic variability and change on most animal species. Therefore,
projected climate change effects must be inferred from what is known about habitat characteristics and the
autecology of each species. Habitat for mammals that depend on high-elevation, snowy environments, whether
predators (Canada lynx, fisher, wolverine) or prey (snowshoe hare), is expected to deteriorate relatively soon if
snowpack continues to decrease. Species that are highly dependent on a narrow range of habitat (pygmy rabbit,
Brewer’s sparrow, greater sage-grouse) will be especially vulnerable if that habitat decreases from increased
disturbance (e.g., sagebrush mortality from wildfire). Species that are mobile or respond well to increased
disturbance and habitat patchiness (deer, elk) will probably be resilient to a warmer climate in most locations.
Some amphibian species (Columbia spotted frog, western toad) may be affected by pathogens (e.g., amphibian
chytrid fungus) that are favored by a warmer climate.

+  Adaptation options: Adaptation strategies for wildlife are focused on maintaining adequate habitat and healthy
wildlife populations, and increasing knowledge of the needs and climate sensitivities of species. Connectivity
is an important conservation strategy for most species in the Northern Rockies. Maintaining healthy American
beaver populations will provide riparian habitat structure and foraging opportunities for multiple species. Quaking
aspen habitat, which is also important for several species, can be enhanced by allowing wildfire, protecting
aspen from grazing, and reducing conifer encroachment. Restoration of more-open stands of ponderosa pine
and mixed-conifer forest through reduction of stand densities will benefit species such as fisher and flammulated
owl. Excluding fire and reducing nonnative species will maintain sagebrush habitats that are required by several
bird and mammal species.

Recreation

+ Effects: Recreation has a significant economic impact throughout the Northern Rockies. A warmer climate will
generally improve opportunities for warm weather activities (hiking, camping, sightseeing) because it will create
a longer time during which these activities are possible, especially in the spring and fall “shoulder seasons.”
However, it will reduce opportunities for snow-based, winter activities (downhill skiing, cross-country skiing,
snowmobiling) because snowpack is expected to decline significantly in the future. Recreationists will probably
seek more water-based activities in lakes and rivers as refuge from hotter summer weather. Higher temperatures
may have both positive and negative effects on wildlife-based activities (hunting, fishing, birding) and gathering of
forest products (e.g., berries, mushrooms), depending on how target habitats and species are affected.

«  Adaptation options: Recreationists are expected to be highly adaptable to a warmer climate by shifting to different
activities and different locations, behavior that is already observed from year to year. For example, downhill
skiers may switch to ski areas that have more reliable snow, cross-country skiers will travel to higher elevations,
and larger ski areas on Federal lands may expand to multi-season operation. Water-based recreationists may
adapt to climate change by choosing different sites that are less susceptible to changes in water levels. Hunters
may need to adapt by altering the timing and location of hunts. Federal management of recreation is currently
not very flexible with respect to altered temporal and spatial patterns of recreation. This can be at least partially
resolved by assessing expected use patterns in a warmer climate, modifying opening times of facilities, and
deploying seasonal employees responsible for recreational facilities earlier in the year.

Ecosystem services

Ecosystem services are increasingly valued on Federal lands, beyond just their economic value. Climate change
effects will vary greatly within different subregions of the Northern Rockies, with some ecosystem services being
affected in the short term and others in the long term. Of the many ecosystem services provided in the Northern
Rockies, eight are considered here, most of which are relevant to other resource categories included in the
assessment.

+  Although annual water quantity (or water yield or water supply) is not expected to change significantly, timing
of water availability is likely to shift, and summer flows may decline. These changes may result in some
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communities experiencing summer water shortages, although reservoir storage can provide some capacity. Rural
agricultural communities will be disproportionately affected by climate change if water does become limiting.

»  Water quality will decrease in some locations if wildfires and floods increase, adding sediment to rivers and
reservoirs. Agriculture is currently the major source of impairment, affecting riparian systems, aquatic habitat,
water temperatures, and fecal coliform. Climate change is expected to amplify these effects. Hazardous fuels
treatments, riparian restoration, and upgrading of hydrologic infrastructure can build resilience to disturbances
that damage water quality.

*  Wood products are a relatively small component of the Northern Rockies economy, and economic forces will
probably have the biggest impacts in the future. As wildfires and insect outbreaks become more common, wood
supply could become less reliable, but overall effects will generally be small except in small towns that depend
on a steady timber supply.

*  Minerals and mineral extraction are important economic drivers in eastern Montana and western North Dakota.
The biggest effects on this industry will be economic factors and factors related to how it connects to other
ecosystem services, particularly water quality. Wildfires and floods can put mineral extraction infrastructure at risk
in some watersheds.

»  Forage for livestock is expected to increase in productive grasslands as a result of a longer growing season
and in some cases elevated carbon dioxide. Therefore, ranching and grazing may benefit from climate change.
Primary effects on grazing include loss of rural population, spread of nonnative grasses, and fragmentation of
rangelands.

«  Viewsheds and air quality will be negatively affected by increasing wildfires and longer pollen seasons. A growing
percentage of the Northern Rockies population will be in demographic groups at risk for respiratory and other
medical problems on days with poor air quality. Treatments of hazardous fuels can help build resilience to
disturbances that degrade air quality.

*  Regulation of soil erosion will be decreased by agricultural expansion, spread of nonnative plants, and increased
frequency of wildfire and floods. Increased capital investments may be needed for water treatment plants if water
quality declines significantly. Climate-smart practices in agriculture and road construction can reduce some
negative effects.

»  Carbon sequestration will be increasingly difficult if wildfires, insect outbreaks, and perhaps plant disease
increase as expected, especially in the western part of the Northern Rockies. At the same time, managing forests
for carbon sequestration is likely to become more important in response to national policies on carbon emissions.
Hazardous fuels treatments can help build resilience to disturbances that rapidly oxidize carbon and emit it to the
atmosphere.

Cultural resources

. Disturbances such as wildfires, floods, and soil erosion place cultural and heritage values at risk. Damage to
cultural and historic sites is irreversible, making protection a key management focus. Climate-induced changes in
terrestrial and aquatic habitats affect abundance of culturally valued plants and animals (especially fish), affecting
the ability of Native American tribes to exercise their treaty rights. Effects on cultural resources are amplified by
external social forces that include a growing regional population, vandalism, and loss of traditional practices in a
globalizing culture.

Conclusions

The NRAP facilitated the largest climate change adaptation effort on public lands to date. This collaboration included
participants from Federal agencies and stakeholder organizations interested in a broad range of resource issues. It
achieved specific goals of national climate change strategies for the USFS and National Park Service, providing a
scientific foundation for resource management and planning in the Northern Rockies. The large number of adaptation
strategies and tactics, many of which are a component of current management practice, provide a pathway

for slowing the rate of deleterious change in resource conditions. Rapid implementation of adaptation—in land
management plans, National Environmental Policy Act documents, project plans, and restoration—will help maintain
functionality of terrestrial and aquatic ecosystems in the Northern Rockies, as well as build the organizational capacity
of Federal agencies to incorporate climate change in their mission of sustainable resource management. Long-term
monitoring will help detect potential climate change effects on natural resources, and evaluate the effectiveness of
adaptation options that have been implemented.
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Chapter 7: Effects of Climate Change on
Rangeland Vegetation in the Northern

Rockies Region

Matt C. Reeves, Mary E. Manning, Jeff P. DiBenedetto, Kyle A. Palmquist,
William K. Lauenroth, John B. Bradford, and Daniel R. Schlaepfer

Introduction

Rangelands are dominated by grass, forb, or shrub
species, but are usually not modified by using agronomic
improvements such as fertilization or irrigation (Lund 2007;
Reeves and Mitchell 2011) as these lands would normally
be considered pastures. Rangeland includes grassland,
shrubland, and desert ecosystems, alpine areas, and some
woodlands (box 7.1). This chapter addresses the potential
effects of climate change on rangeland vegetation in the
Forest Service, U.S. Department of Agriculture (USFS)
Northern Region and the Greater Yellowstone Area (GYA),
hereafter called the Northern Rockies region. Within the
Northern Rockies region, rangelands occupy more than
65 million acres (Reeves and Mitchell 2011). Ecosystem
services derived from these rangelands include forage for
millions of domestic and wild ungulates, greater sage-
grouse (Centrocercus urophasianus) habitat, and numerous
recreational opportunities (see Chapter 10).

The sustainability of goods and services is threatened by
land-use change, such as residential development, energy

development, and invasion by nonnative plant species (see
Chapter 11). These threats, expressed against the backdrop
of climate change, pose unique challenges for managers in
the Northern Rockies region. The effects of climate change
on rangelands have received less attention than effects on
forests, but similar to forests, past and future human land-
use activities may exceed climate change effects, at least
in the short term (Peilke et al. 2002). Interactions among
land-use change, management, and climate change are not
well understood and are difficult to forecast. Therefore, this
analysis of potential climate change effects on rangelands
does not explicitly include estimates of future land-use
change or management, and instead focuses on estimated
regeneration success, response to disturbance (especially
fire), and life history traits.

Relative to forests, rangelands usually occur in more
arid environments, either due to edaphic (e.g., some mon-
tane grasslands, subalpine shrublands, and fell-fields) or
climatic factors. These arid conditions present challenges
for studying the effects of climate change because some
rangelands will be less resilient to changes in environmental

Box 7.1—Rangeland Definitions used by Different Federal Agencies

U.S. Forest Service

1.0 acre in size and 120.0 feet wide (USDA FS 2010).
Bureau of Land Management

meadows (Society for Range Management 1998).
Natural Resources Conservation Service

Land primarily composed of grasses, forbs, or shrubs. This includes lands vegetated naturally or artificially to provide
a plant cover managed like native vegetation and does not meet the definition of pasture. The area must be at least

Land on which the indigenous vegetation (climax or natural potential) is predominantly grasses, grass-like plants, forbs,
or shrubs and is managed as a natural ecosystem. If plants are introduced, they are managed similarly. Rangelands
include natural grasslands, savannas, shrublands, many deserts, tundra, alpine communities, marshes, and wet

A land cover/use category that includes land on which the climax or potential plant cover is composed principally of
native grasses, grass-like plants, forbs or shrubs suitable for grazing and browsing, and introduced forage species that
are managed like rangeland. This would include areas where introduced hardy and persistent grasses, such as crested
wheatgrass, are planted and practices such as deferred grazing, burning, chaining, and rotational grazing, are used
with little or no chemicals/fertilizer being applied. Grasslands, savannas, many wetlands, some deserts, and tundra are
considered to be rangeland. Certain low forb and shrub communities, such as mesquite, chaparral, mountain shrub,
and pinyon-juniper, are also included as rangeland (USDA 2009).

USDA Forest Service RMRS-GTR-374. 2018
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influences such as fire regimes and periodicity of precipita-
tion. Understanding resistance and resilience for rangelands
is important for estimating possible effects of climate
change. In broad terms, resilience refers to the capacity of
ecosystems to regain structure, processes, and function-

ing in response to disturbance (Allen et al. 2005; Holling
1973), whereas resistance describes capacity to retain these
community attributes in response to disturbance (Folke et
al. 2004). These concepts are especially critical when con-
sidering establishment of nonnative plants and interactions
between climate change stressors (Chambers et al. 2014).
In the Northern Rockies region, areas with higher precipita-
tion and cooler temperatures generally result in greater
resources and more favorable conditions for plant growth
and reproduction (Alexander et al. 1993; Dahlgren et al.
1997). These concepts are demonstrated in fig. 7.1, which
indicates that management for ecosystem services derived
from rangelands will be relatively more effective in more
mesic rangelands.

In this chapter we explore potential effects of climate
change on selected rangeland habitats. The evaluation of
risk was qualitatively and synthetically determined by using
a combination of workshop output, literature (where avail-
able), and the judgment of the authors and two reviewers. It
is meant to represent our best guess as to the relative vulner-
ability of each system to estimated perturbations brought
forth by expected changes in climate across the Northern
Rockies region.

Vegetation Classes

The rangeland assessment focuses largely on groupings
of vegetation types but also references individual species
where information and data suggest inferences can be
made for species. We identified rangeland vegetation to be
included in the vulnerability assessment by first reviewing
the extent of rangelands within the conterminous United
States (Reeves and Mitchell 2011). The National Resources
Inventory definition (box 7.1) of rangelands was used to
identify rangelands within the Northern Rockies region. The
list of U.S. Ecological Systems designated as rangelands
that were retained for evaluation is found in table 7.1. The
great complexity of rangeland vegetation combined with
a paucity of studies on climate change effects suggests
that a grouping of individual vegetation types into classes
would be useful. The resulting groups to be analyzed are
the northern Great Plains, montane shrubs, montane grass-
lands (referred to as “western grasslands”), and sagebrush
systems. It is important for the reader to understand that
multiple vegetation types make up each of the four broad
classes of vegetation. In the case of sagebrush systems,
however, four groups (big sagebrushes, short sagebrushes,
sprouting sagebrushes, and mountain sagebrush) were sub-
sequently further permuted by individual types (table 7.1).

The northern Great Plains has a broad geographic
expanse and mixture of both cool-season (C3) and
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Figure 7.1—Resilience to disturbance (a) and resistance to
cheatgrass (b) over a typical temperature/precipitation
gradient in the cold desert. Dominant ecological sites occur
along a continuum that includes Wyoming big sagebrush
on warm and dry sites, to mountain big sagebrush on
cool and moist sites, to mountain big sagebrush and
root-sprouting shrubs on cold and moist sites. Resilience
increases along the temperature/precipitation gradient and
is influenced by site characteristics like aspect. Resistance
also increases along the temperature/precipitation
gradient and is affected by disturbances and management
treatments that alter vegetation structure and composition
and increase resource availability. ARTRw = Wyoming big
sagebrush (Artemisia tridentata ssp. wyomingensis); ARTRv
= mountain big sagebrush (A. tridentata ssp. vaseyana);
SYOR = mountain snowberry (Symphoricarpos oreophilus)
(modified from Chambers et al. 2014).

warm-season (C4) species. Montane shrubs are species im-
portant for browsing by native ungulates. The relatively rare
montane grasslands have a unique position on the landscape,
dominance of cool-season species, and specific types of
habitats they provide in juxtaposition to forest vegetation.
Sagebrush systems (dominated by species in the genus
Artemisia) provide critical wildlife habitat, including for
the imperiled greater sage-grouse, and are a ubiquitous and
iconic species in much of the western United States. In ad-
dition, sagebrush systems, especially those dominated by
big sagebrushes, have been more widely studied, at least
partially as a result of recent research on sage-grouse habi-
tat. Therefore, the vulnerability of some sagebrush species
is supported by a richer body of information than for other
vegetation. But this does not mean that all sagebrush types
have been studied equally in the context of climate change.

USDA Forest Service RMRS-GTR-374. 2018
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Table 7.1—Aproximate area of U.S. Ecological Systems identified as rangelands within the NRAP assessment region. Sagebrush
systems were further subdivided into mountain, low, and big or sprouters. These distinct species were grouped into the “big
or sprouters” category only for developing map legends because, using the mid-level Ecological Systems mapping approach,
without external data, it would be difficult to differentiate each unique cover type dominated by the various Artemisia spp.

across the landscape.

Sagebrush
Rangeland vegetation types Ecological system Area grouping
Acres
Northern Great Plains (C3/C4 mix)  Central Tallgrass Prairie 479,899 NA
Northwestern Great Plains Mixedgrass Prairie 37,818,629 NA
Western Great Plains Sand Prairie 2,285,234 NA
Western Great Plains Shortgrass Prairie 39,543 NA
Western Great Plains Tallgrass Prairie 7,763 NA
North-Central Interior Sand and Gravel Tallgrass 209,599 NA
Prairie
Northern Tallgrass Prairie 367,864 NA
Great Plains Prairie Pothole 262,813 NA
Total 41,471,344 NA
Montane shrubs Northern Rocky Mountain Montane-Foothill 1,257,671 NA
Deciduous Shrubland
Inter-Mountain Basins Curl-leaf Mountain 175,887 NA
Mahogany Woodland and Shrubland
Rocky Mountain Lower Montane-Foothill Shrubland 4,602 NA
Total 1,438,160 NA
NA
Montane grasslands (C3) Columbia Plateau Steppe and Grassland 1,257,642 NA
Columbia Basin Palouse Prairie 2,692,161 NA
Columbia Basin Foothill and Canyon Dry Grassland 58,773 NA
Inter-Mountain Basins Semi-Desert Grassland 42,311 NA
Northern Rocky Mountain Lower Montane-Foothill- 14,419 NA
Valley Grassland
Northern Rocky Mountain Subalpine-Upper 5,957 NA
Montane Grassland
Total 4,071,263 NA
Sagebrush systems Artemisia tridentata ssp. vaseyana Shrubland 2,931,640 Mountain
Alliance
Inter-Mountain Basins Big Sagebrush Steppe 9,656,339 Big or sprouter
Inter-Mountain Basins Big Sagebrush Shrubland 2,451,624 Big or sprouter
Inter-Mountain Basins Montane Sagebrush Steppe 1,993,178 Big or sprouter
Columbia Plateau Low Sagebrush Steppe 156,012 Low
Wyoming Basins Dwarf Sagebrush Shrubland and 49,723 Low
Steppe
Inter-Mountain Basins Semi-Desert Shrub-Steppe 41,572 Big or sprouter
Great Basin Xeric Mixed Sagebrush Shrubland 17,970 Low
Columbia Plateau Scabland Shrubland 14,529 Big or sprouter
Total 17,312,587
All rangelands total 64,293,354

USDA Forest Service RMRS-GTR-374. 2018
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Figure 7.2—Estimated
distribution of various
sagebrush vegetation classes
in the Northern Rockies.
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To reflect the disparate amount of study on climate change
effects on sagebrush species, four sagebrush types were
delineated for the Northern Rockies for this study (fig. 7.2,
sagebrush types):

» Big sagebrushes: Wyoming big sagebrush (4.
tridentata spp. wyomingensis) and basin big sagebush
(A. tridentata ssp. tridentata)

» Low sagebrushes: low sagebrush (4. arbuscula) and
black sagebrush (4. nova)

* Sprouting sagebrushes: silver sagebrush (4. cana) and
threetip sagebrush (4. tripartita)

* Mountain big sagebrush (4. tridentata ssp. vaseyana)

Figure 7.2 does not represent an exact accounting of
these four vegetation classes but suggests an estimated dis-
tribution where each grouping is usually found. In addition,
when Ecological Systems are mapped at this level, it is not
possible to differentiate the distribution of silver and threetip
sagebrush as they are often disjunctively commingled with
other types. As a result, only three categories are mapped;
within the largest category, the big sagebrushes and
sprouting sagebrushes are all represented in one estimated
distribution.

The Wyoming and basin big sagebrush types were ag-
gregated because they have similar life histories, stature,
and areal coverage in the Northern Rockies region, and
represent critical habitats for many species of birds and wild
and domestic ungulates. Despite similar life history traits,
basin big sagebrush occupies sites with deeper soils (often
on alluvial fans). These conditions tend to increase available
moisture with higher coverage by perennial bunchgrasses,
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suggesting these sites may be more resilient and resistant to
various threats (Chambers et al. 2007). Similarly, the low
sagebrushes were chosen for the unique habitats they repre-
sent (especially black sagebrush) and similar life histories.
Both silver sagebrush and threetip sagebrush can resprout
after fire, making them unique in that regard among the
sagebrush species, with the exception of periodic sprouting
by some variants of mountain big sagebrush.

Finally, mountain big sagebrush was chosen for its
(usually) distinct positioning on the landscape, in addi-
tion to being the most mesic of sagebrush communities
in the Northern Rockies region. Communities dominated
by Wyoming big sagebrush are by far the most common
and occupy the greatest area (table 7.2), whereas the low
sagebrush type occupies the least. However, although basin
and Wyoming big sagebrush are common throughout the
Northern Region, mountain big sagebrush communities
occupy the greatest extent on lands managed by the USFS.
Although the communities dominated by the Artemisia
species listed here were subdivided for evaluating possible
effects of climate change, four species (basin big, Wyoming
big, threetip, and silver) were grouped for mapping purposes
as the “big or sprouter” category (table 7.1) because differ-
entiating them across the landscape was impractical.

Vegetation Productivity in
Response to Climate Change

Although the current extent of rangeland in the Northern
Rockies region can be accurately described, uncertainty in

USDA Forest Service RMRS-GTR-374. 2018




CHAPTER 7:

EFFECTS OF CLIMATE CHANGE ON RANGELAND VEGETATION IN THE NORTHERN ROCKIES REGION

Table 7.2—Area of rangeland vegetation classes evaluated in each NRAP subregion.

Subregion Rangeland vegetation classes Area Proportion
Acres Percent

Western Rockies Montane grasslands 596,837 34.4
Montane shrubs 298,153 35.7
Sagebrush systems 358,086 29.9

Total 1,253,076

Central Rockies Montane grasslands 845,539 43.6
Montane shrubs 173,980 18.6
Sagebrush systems 507,391 37.8

Total 1,526,909

Eastern Rockies Montane grasslands 735,758 13.5
Montane shrubs 328,306 12.5
Northern Great Plains (C3/C4 mix) 221,193 5.9
Sagebrush systems 2,572,138 68.2

Total 3,857,395

Grassland Montane grasslands 1,343,858 1.8
Montane shrubs 266,233 0.7
Northern Great Plains (C3/C4 mix) 41,204,297 80.6
Sagebrush systems 8,586,897 16.8

Total 51,401,285

Greater Yellowstone

Area Montane grasslands 549,271 6.1
Montane shrubs 371,488 8.5
Northern Great Plains (C3/C4 mix) 45,848 0.7
Sagebrush systems 5,288,075 84.7

Total 6,254,682

All subregions total 128,586,695

the underlying global climate models (GCMs) used to esti-
mate climate change effects (see Chapter 3), and uncertainty
in models of physiological response, make it difficult to con-
fidently project the effects of climate change on rangelands.
Our understanding of the potential effects of climate change
in the region can be improved if comparisons of impacts are
made with other areas.

The primary inference about climate change effects
on rangeland vegetation nationally is one of increasing
temperature, lower soil moisture, changing phenology, and
decreasing annual production. However, projected tempera-
tures exhibit far less variability among scenarios and GCMs
than precipitation. Therefore, areas where projections sug-
gest that temperature rather than precipitation is a dominant
driver may be more reliable. Figure 7.3 suggests that, rela-
tive to much of the rest of the United States, the Northern

USDA Forest Service RMRS-GTR-374. 2018

Rockies region could experience an increase in annual net
primary productivity (NPP). In addition, the modeled over-
all increases in productivity appear to be more consistent in
the region compared with other areas because there is less
disagreement among the three emissions scenarios evaluated
(Nakic¢enovi¢ et al. 2000; Reeves et al. 2014).

Changing climate regimes will also influence phenology
in unexpected ways. For example, in tallgrass prairie (a rare
type in the Northern Rockies region), a 7.2 °F increase in
ambient temperature caused earlier anthesis among spring-
blooming species and later anthesis in fall-blooming species
(Sherry et al. 2007), implying that climate change will
influence vegetation in complex ways (Suttle et al. 2007;
Walther 2010). In addition, effects of climate change may be
greater at higher elevations (Beniston et al. 1997) (fig. 7.3),
a logical projection for the Northern Rockies region, where
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Figure 7.3—Mean slope of linear regression of the net primary productivity trend for the B2, A1B, and A2 emission
scenarios (models averaged here include: GCGM2, HadCM3, CSIRO, MK2, MIROC3.2) (a) and standard
deviation of the mean slope of linear regression of the net primary productivity trend for the same scenarios (b)
(from Reeves et al. 2014).
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the primary factor limiting plant growth at high elevations is
growing season length and cold temperatures.

The modeled overall effect of projected climate change
in the Northern Rockies region is apparently increased
growing season length and increased NPP, which may be
especially pronounced at higher elevations. Removal of
growth limitations could result in significant changes in veg-
etation at higher elevations, such as the Greater Yellowstone
Area subregion. Higher NPP may seem counterintuitive be-
cause increased temperatures suggest greater moisture stress
and therefore potentially less favorable growing conditions.
Indeed, if all other factors besides temperature remained
constant in the future, then vegetation might undergo signifi-
cant reductions in productivity from increased evaporative
demand and reduced soil moisture. Conversely, some high-
elevation areas may experience increased production with
increasing temperatures (Reeves et al. 2014), especially
relatively mesic areas supporting mountain sagebrush.

Increased atmospheric carbon dioxide (CO,) concentra-
tions may modify ecophysiological growth processes in
rangeland vegetation. Carbon dioxide enrichment can
enhance water use efficiency through reduced water lost
through stomata (see Chapter 6), but the response is not
consistent across all vegetation. For example, in tallgrass
prairie, Owensby et al. (1999) found that elevated CO,
could increase productivity of aboveground and below-
ground biomass, but response depended on water stress.
These findings are consistent with results from Reeves et
al. (2014) and suggest that desiccation effects of increased
temperature can be offset to some extent by CO, enrichment
via reduced transpirational demand (Leakey 2009; Morgan
et al. 2004b, 2011; Woodward and Kelly 2008) and higher
water use efficiency (Bachelet et al. 2001; Christensen et al.
2004; Morgan et al. 2008, 2011; Polley et al. 2003).

Recent experimental research on the northern Great
Plains is particularly relevant to the managers in the
Grassland subregion where northern mixed-grass prairie
dominates. The Prairie Heating and CO, Enrichment
(PHACE) study reported an increase of aboveground pro-
ductivity by an average of 33 percent over 3 years (Morgan
et al. 2011), which substantiates estimates by Reeves et al.
(2014) of a 28-percent increase in productivity for the north-
ern Great Plains by 2100.

As a footnote to the preceding discussion, it is important
to note that all models are a simplification of reality, and
interpretation of model results needs to consider uncertainty,
inputs, and model assumptions. Models cited here have in-
creasing disparity as time progresses, especially in more arid
regions where changing precipitation amounts and patterns
may be the primary driver of change.

Management Concerns

The primary management and ecological concerns identi-
fied as affecting rangelands in the Northern Rockies region
include uncharacteristic fire regimes, improper grazing, and
invasive species. Uncharacteristic fire regimes, which are

USDA Forest Service RMRS-GTR-374. 2018
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based on the historical fire regime, threaten some rangeland
habitats, especially sagebrush steppe, across much of the
western United States, including the Northern Rockies re-
gion. The overall concern over uncharacteristic fire regimes
is perhaps smaller than for other regions such as the Great
Basin. On one end of the spectrum, the shortened fire return
intervals of many sagebrush habitats suggest that “too
much” fire currently affects the landscape relative to histori-
cal fire regimes. It is widely documented that increasing
dominance of invasive annual grasses has created a positive
feedback cycle characterized by frequent fire followed by
increased dominance of annual grasses, which further cre-
ate fuel conditions that facilitate combustion (Chambers et
al. 2007). These conditions are exacerbated by wetter and
warmer winters, which are projected throughout the region
in the future.

On the other end of the spectrum, fire exclusion has led
to decreased fire return intervals, which may be responsible
for Douglas-fir (Pseudotsuga menziesii) encroachment into
montane grasslands (Arno and Gruell 1986), and into higher
elevation sagebrush habitats, especially those dominated by
mountain big sagebrush (Heyerdahl et al. 2006) (fig. 7.4).
Overall, the invasive species of greatest concern in sage-
brush communities throughout Northern Rockies rangelands
is cheatgrass (Bromus tectorum), although Japanese brome
(B. japonicus) and leafy spurge (Eurphorbia esula) are also
concerns in the northern Great Plains. Recent range expan-
sion of cheatgrass is particularly prominent in the western
half of the Northern Rockies region and can be somewhat
explained by genetic variation leading to increased survival
and persistence in otherwise marginal habitats (Merrill
et al. 2012; Ramakrishnan et al. 2006). This rapid range

Figure 7.4—Conifer encroachment, predominantly ponderosa
pine into a montane grassland, including the ubiquitous
graminoid rough fescue (photo: Mary Manning, USDA
Forest Service).
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expansion may be enhanced by elevated atmospheric CO,
concentrations and increased soil disturbance (Chambers

et al. 2014). Improper grazing, a term referring to the mis-
management of grazing that produces detrimental effects on
vegetation or soil resources, can exacerbate these conditions
(see chapter 6). Generally, however, U.S. rangelands are

not improperly grazed (Reeves and Bagget 2014; Reeves
and Mitchell 2011) to the point of degradation; improper
grazing is not the normal condition across rangelands in the
Northern Region. Where improper grazing does occur, it can
accelerate the annual grass invasion/fire cycle, especially

in some sagebrush types, the northern Great Plains, and
montane grasslands.

Broad-Scale Vulnerability of
Rangelands to Climate Change

Determining the vulnerability of rangeland vegetation
is a difficult task. Uncertainty exists in the projections of
future climatic conditions as well as in expected effects of
vegetation. Given the lack of studies focused on manipu-
lated climate on vegetation performance, we are limited to
past observations, some published scientific studies, and our
collective best judgment. Despite the paucity of relevant
studies and the uncertainty of projected climates, a few
elements of climate change are increasingly recognized as
potential outcomes. In this section, we briefly discuss some
overarching expected climatic conditions against which we
estimate likely outcomes for vegetation in each of the four
identified vegetation classes.

Projected temperature increases (Intergovernmental
Panel on Climate Change [IPCC] 2014; see also Capter
3) are expected to increase evaporative demand (e.g.,
potential evapotranspiration) (Klos et al. 2014) and pose
the greatest overall temperature stress of all the estimated
future climate outcomes (Polley et al. 2013). Projected
changes in precipitation patterns and increasing potential
evapotranspiration could encourage more frequent and
intense fires from the effects of early-season plant growth
combined with the desiccating effects of warmer, drier sum-
mers (Morgan et al. 2008). Collectively, these changes may
result in considerably drier soils, particularly in the summer
months when plants are phenologically active (Bradford et
al. 2014; Polley et al. 2013). However, winter precipitation
is projected to increase by 10 to 20 percent in the Northern
Rockies region (IPCC 2014; Shafer et al. 2014; see also
Chapter 3), which may compensate for increasing severity
and frequency of droughts. In addition, rising CO, levels
may offset water loss due to higher evaporative demand by
increasing stomatal closure and water use efficiency.

Warmer winters and decreasing snowpack may also be
significant factors affecting rangeland vegetation classes
(discussed next). Minimum temperatures are expected to
increase more than maximum temperatures, providing
longer frost-free periods. Warmer, wetter winters would
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favor early-season plant species and tap-rooted species that
are able to reach accumulated early growing season soil
water (Polley et al. 2013). These conditions are projected to
significantly increase annual area burned and fire intensity
(Westerling et al. 2006).

Northern Great Plains, Dominated by
Mixtures of Cool-Season and Warm-
Season Grasses

Eastern grasslands are expansive across the northern
Great Plains, extending from the foothill grasslands along
the east slope of the northern and central Rocky Mountains
in Montana to the Red River basin in eastern North Dakota.
Annual precipitation increases from west to east and ecolog-
ical provinces change from dry temperate steppe to humid
temperate prairie parkland along this gradient (Cleland et
al. 2007). Grasslands are the predominant potential vegeta-
tion type, occupying about 80 percent of the northern Great
Plains landscape. Kiichler (1975) divides the potential
natural vegetation of this area into shortgrass prairie, north-
ern mixed grass prairie, and tallgrass prairie, reflecting the
changing precipitation regime. The shortgrass prairie bor-
ders the foothill grasslands and extends to eastern Montana.
The typical grassland vegetation types are characterized by
grama (Bouteloua spp.)/needlegrass (Stipa spp.)/wheatgrass
(Pseudoroegneria spp.) and a mix of C3 and C4 plant spe-
cies. The northern mixed grass prairie borders the shortgrass
prairie in eastern Montana and extends to eastern North
Dakota. Typical grassland vegetation types are characterized
by wheatgrass/needlegrass in the west and wheatgrass/blue-
stem (Andropogon spp.)/needlegrass to the east, including a
mix of C3 and C4 plant species. The tallgrass prairie borders
the northern mixed grass prairie in eastern North Dakota and
South Dakota and borders the eastern hardwood forest to the
east. The typical grassland vegetation types are character-
ized by bluestem and a dominance of C4 grasses, although
C3 grass species are present.

Frequent fire was a major factor in maintaining grass-
land dominance, particularly in the eastern Great Plains.
Settlement in the late 19 and early 20™ centuries altered
fire regimes by reducing fire frequency and changing the
seasonality of fire. The predominant land use and land cover
changed from grasslands to crop agriculture and domestic
livestock production, affecting the continuity of fuels and
fire spread. Reduced fire coupled with increased CO, has
encouraged woody plant encroachment, primarily in the
eastern Great Plains (Morgan et al. 2008).

Other stressors include increased presence and abun-
dance of competitive invasive grass and forb species.

These species reduce plant diversity of native grasslands
and alter grassland structure. Noxious weeds such as leafy
spurge (Euphorbia esula) are abundant in places, and other
invasive nonnative species include Kentucky bluegrass (Poa
pratensis), Japanese brome, and cheatgrass. In addition,
energy development and the associated infrastructure frag-
ments local grassland patterns where it occurs. Roads and
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traffic increase opportunities for introduction and spread of
invasive species.

Soil water availability and water stress are principal
driving factors in semiarid grasslands, influencing plant
species distribution, plant community composition and
structure, productivity, and associated social and economic
systems of the northern Great Plains. Soil water availability
is influenced by complex interactions among temperature,
precipitation, topography, soil properties, and ambient CO,
(Ghannoum 2009; Morgan et al. 2011). These physical
factors interacting with plant species physiological mecha-
nisms, particularly those of C3 and C4 plants, will influence
how grasslands will respond to climate change and elevated
atmospheric CO, levels (Bachman et al. 2010; Chen et al.
1996; Ghannoum 2009; Morgan et al. 2011).

Auvailable soil water is unevenly distributed across
landscapes and is a function of landform, topography, and
soil properties. Soil moisture loss through evapotranspira-
tion is influenced by slope, aspect, and solar loading at the
ground surface, and water holding capacity is influenced by
soil properties. These characteristics in the northern plains
may modify the effects of climate change and enhanced
CO, locally. Landscape patterns of available soil water may
result in uneven patterns of vegetation change and produc-
tivity under changing temperature and moisture regimes
and elevated CO, levels. The desiccating effect of higher
temperature and increased evaporative demand (Morgan et
al. 2011) is expected to offset the benefit of higher precipita-
tion, resulting in lower soil water content and increased
drought throughout most of the Great Plains (Morgan et
al. 2008). Elevated CO, may counter the effects of higher
temperatures and evaporative demand by improving water
use efficiency of plants (Morgan et al. 2011).

Rising CO, and temperature combined with increased
winter precipitation may favor some herbaceous forbs,
legumes, and woody plants (Morgan et al. 2008). Plant
productivity is expected to increase with projected changes
in temperature and moisture combined with elevated CO,
(Morgan et al. 2008). Forage quality may decline as a result
of less available forms of soil nitrogen and changes in plant
species and functional groups (Morgan et al. 2008). A major
shift in functional groups from C3 to C4 plants is possible
but uncertain; warmer temperature and longer growing
seasons favor C4 grasses, but the effects of higher CO, on
water-use efficiency may benefit C3 grasses. Most invasive
species are C3 plants, so they may become more problem-
atic with the benefits of increased CO, (Morgan et al. 2008).

The adaptive capacity of Great Plains grasslands during
the drought of the 1930s and 1950s was documented for
the central plains (Weaver 1968). There was a shift in C4
grasses, in which big bluestem (Andropogon gerardii) and
little bluestem (Schizachyrium scoparium) were replaced by
the shortgrass species blue grama (Bouteloua gracili) and
buffalograss (B. dactyloides). Shifts from tallgrass prairie to
mixed grass prairie were also documented with an increase
in the C3 plants western wheatgrass and needlegrass. This
shift was later reversed during the higher precipitation
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period of the 1940s, indicating historical adaptive capac-
ity of Great Plains grasslands to the effects of long-term
drought. These shifts were also affected by grazing condi-
tion of the grasslands before the drought.

Risk Assessment

Magnitude of effects: Moderate magnitude for change
from temperate grassland to subtropical grassland by 2050
under no fire suppression. Change toward increased woody
vegetation by 2050 with fire suppression. High magni-
tude for change from temperate grassland to subtropical
grassland by 2100. Moderate magnitude for change toward
woody vegetation by 2100.

Likelihood of effects: Moderate likelihood for change
from temperate grassland to subtropical grassland by 2050
with no fire suppression, and moderate likelihood for change
to increased woody vegetation by 2050 with fire suppres-
sion. The response of C3 and C4 species to the combined
effects of higher temperature and elevated CO, is uncertain.

Communities Dominated by Montane
Shrubs

Montane shrubs are typically associated with montane
and subalpine forests, and occur as large patches within
forested landscapes. Species such as Rocky Mountain
maple (Acer glabrum), oceanspray (Holidiscus discolor),
tobacco brush (Ceanothus velutintis var. velutinus), Sitka
alder (Alnus viridus subsp. sinuata), thimbleberry (Rubus
parviflorus), chokecherry (Prunus virginiana), serviceberry
(Amelanchier alnifolia), currant (Ribes spp.), snowberry
(Symphoricarpos albus), Scouler willow (Salix scouleri-
ana), and mountain ash (Sorbus scopulina) are common.

Montane shrubs persist on sites where regular distur-
bance kills the top of plants. This, along with full sunlight
and adequate soil moisture, stimulates regrowth from the
root crown, rhizomes, and roots. Stressors include fire
exclusion and conifer establishment, browsing by both
native and domestic wildlife, and insects and disease. Loss
of topsoil following frequent, hot fires, can lead to loss of
these species over time (Larsen 1925; Wellner 1970). Mesic
shrubs are well adapted to frequent fire, and under the
right conditions can expand and outcompete regenerating
conifers. However, with declining snowpack and warmer
temperatures, fires may be hotter and sites may be drier,
causing variable amounts of mortality, depending on site
conditions.

Mesic shrubs are well adapted to frequent fire (Smith
and Fisher 1997) and sprout vigorously after fire, enabling
them to quickly regain dominance on the site. As sites
become drier and fires become more frequent and severe,
however, there may be a shift away from mesic species to
more xeric species such as rubber rabbitbrush (Ericameria
nauseosa), green rabbitbrush (Chrysothamnus viscidiflo-
rus), and spineless horsebrush (Tetradymia canescens).
Nonnative invasive plant species may also expand into these
communities, particularly following fire (Bradley 2008;
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D’ Antonio and Vitousek 1992). With warmer temperatures
and drier soils, some mesic shrub species (e.g., Sitka alder
and Rocky Mountain maple) may shift their distribution up
in elevation or to cooler, moister sites (e.g., northeast-facing
depressions).

Risk Assessment

Magnitude of effects: Moderate
Likelihood of effects: High

Montane Grasslands

Montane grasslands are associated with mountain-
ous portions of the Northern Rockies region including
the Palouse prairie and canyon grasslands of northern and
central Idaho. Montane grasslands occur in intermountain
valleys, foothills, and mountain slopes from low to relative-
ly high elevation. They are dominated by C3 grasses, along
with a large number of forbs and upland sedges. Shrubs and
trees may occur with low cover. Dominant species include
bluebunch wheatgrass (Pseudoroegneria spicata), rough
fescue (Festuca campestris), Idaho fescue (F. idahoensis),
Sandberg bluegrass (Poa secunda), needle-and-thread
(Hesperostipa comata), western wheatgrass (Pascopyrum
smithii), prairie junegrass (Koeleria macrantha), western
needlegrass (Achnatherum nelsonii), and Richardson’s
needlegrass (4. richardsonir).

Many low-elevation grasslands have been converted to
agricultural use or are grazed by domestic livestock. They
have also been subjected to extensive human use and land
use conversion. Those grasslands that remain, particularly at
lower elevations, are typically highly disturbed, fragmented,
and frequently occupied by many nonnative invasive plant
species. Prolonged improper livestock grazing, native
ungulate herbivory, and nonnative invasive plants are the
primary stressors in these grasslands (Finch 2012). Loss of
topsoil can occur if vegetation cover and density decline and
bare ground increases. Lack of fire is also a chronic stressor
because conifers from lower montane forests can become
established in some areas, and can increase in density and
cover with fire exclusion (Arno and Gruell 1986; Heyerdahl
et al. 2006). As conifer density and cover increase with fire
exclusion, grass cover declines because most grassland
species are shade-intolerant (Arno and Gruell 1983). If
fires become hotter and more frequent, however, there is an
increased risk of mortality of native species and invasion by
nonnative plant species. But invasive plants may not always
establish and dominate a site (Ortega et al. 2012; Pearson et
al., in review) under these conditions. If spring and winter
precipitation increase, some expect exotic annual grasses,
particularly cheatgrass, which germinates in the winter/early
spring, to establish and set seed earlier than native perennial
grasses (Finch 2012). This would create an uncharacteristic,
continuous fine fuel load that is combustible by early sum-
mer and capable of burning native perennial grasses often
before they have matured and set seed (Bradley 2008;
Chambers et al. 2007). Other nonnative species, such as
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spotted knapweed (Centaurea melitensis), Dalmatian toad-
flax (Linaria dalmatica), butter-and-eggs (Linaria vulgaris),
and sulphur cinquefoil (Potentilla recta) respond favorably
after fire and can increase in cover and density.

Nonnative invasive plant species will probably expand,
particularly in the lower elevation grassland communities,
because resistance to invasion may decrease as these com-
munities become warmer and drier (Chambers et al. 2014).
Greater disturbance is likely to increase the rate and mag-
nitude of infestation (Bradley 2008). In addition, drier site
conditions coupled with ungulate effects (grazing, browsing,
hoof damage) and the associated increases in surface soil
erosion may increase bare ground (Washington-Allen et al.
2010). Low-elevation grasslands may shift in dominance
towards more drought-tolerant species. Some model output,
such as MC2 (Bachelet et al. 2001) (see Chapter 6), suggests
that C3 grasslands will decline and C4 grasslands will ex-
pand based solely on temperature trends. However, elevated
CO, favors C3 grasses and enhances biomass production,
whereas warming favors C4 grasses due to increased water
use efficiency (Morgan et al. 2004a, 2007). Although C3
grasses dominate western montane grasslands, a warmer
and drier climate may allow C4 grasses (primarily northern
Great Plains species) to expand westward into montane
grasslands. In general, it is likely that with increased
warming and more frequent fires, grasslands will become
a more dominant landscape component as shrublands and
lower montane conifer forests are burned more frequently
and unable to regenerate. Increasing fire would also lead to
the expansion of invasive species into grasslands (Bradley
2008; D’ Antonio and Vitousek 1992).

Risk Assessment

Magnitude of effects: High
Likelihood of effects: High

Sagebrush Systems

Communities Dominated by Wyoming Big
Sagebrush and Basin Big Sagebrush

The current distribution of Wyoming big sagebrush eco-
systems in the Northern Rockies region is generally patchy
throughout most of Montana with more spatially consistent
cover in the Eastern Rockies and Grassland subregions
(Comer et al. 2002). As previously mentioned, the distribu-
tion of basin big sagebrush habitats is generally restricted to
deeper soils, often including alluvial fans. Stressors to both
Wyoming and basin big sagebrush communities include
prolonged improper livestock grazing, native ungulate
herbivory, and nonnative invasive plants. Loss of topsoil
can occur if vegetation cover and density decline and bare
ground increases, primarily caused by ungulate impacts
(e.g., grazing and mechanical/hoof damage). In contrast
with mountain and basin big sagebrush habitats, Wyoming
big sagebrush habitats spatially coincide with oil and gas
development, which is prominent on the eastern edge of
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its distribution. The Grassland and Greater Yellowstone
Area subregions contain the largest extent of these two big
sagebrushes, although the Western Rockies subregion may
contain the largest amount of basin big sagebrush.

Big sagebrush ecosystems have decreased in spatial extent
in the 20™ century (Bradley 2010; Knick et al. 2003; Manier
et al. 2013; Noss et al. 1995) because of oil and gas develop-
ment (Doherty et al. 2008; Walston et al. 2009), removal of
big sagebrushes to increase livestock forage (Shane et al.
1983), plant pathogens and insect pests (Haws et al. 1990;
Nelson et al. 1990), improper grazing (Davies et al. 2011),
invasive species (D’ Antonio and Vitousek 1992; Davies
2011), and changes in disturbance regimes (Baker 2011;
Balch et al. 2013). Oil and gas development, along with ur-
banization and land conversion for agriculture and livestock
grazing, lead not only to habitat loss, but to fragmented habi-
tat patches (Naugle et al. 2011), resulting in barriers to plant
dispersal, avoidance by greater sage-grouse, and loss of obli-
gate and facultative wildlife species (Rowland et al. 2006). In
addition to habitat destruction of big sagebrush ecosystems,
several stressors can cause big sagebrush dieback and reduce
its biomass and density, including insect pests (Haws et al.
1990), plant pathogens (Cardenas et al. 1997; Nelson et al.
1990), and frost damage (Hanson et al. 1982). Improper use
by domestic livestock alters the structure and composition
of big sagebrush ecosystems through the loss of palatable
components of the plant community (i.e., perennial grasses
and forbs), along with reducing or increasing big sagebrush
cover (Anderson and Holte 1981; Brotherson and Brotherson
1981), and increasing the probability of nonnative annual
grass invasion (Cooper et al. 2007; Davies et al. 2011; Knapp
and Soulé 1996). Cheatgrass has reduced the spatial distribu-
tion and habitat quality of sagebrush ecosystems throughout
much of the western United States (Balch et al. 2013; Brooks
et al. 2004).

Invasion by cheatgrass will pose an even greater threat to
big sagebrush ecosystems in the future because of projected
increases in its biomass production and in fire frequency
due to rising temperature and CO, levels (Westerling et al.
2006; Ziska et al. 2005). Although less studied, field brome
(Bromus arvensis) can also negatively affect big sagebrush
plant communities because it can colonize readily after
stand-replacing fires that eliminate big sagebrushes (Cooper
et al. 2007).

Several life history traits of big sagebrushes make them
sensitive to direct and indirect effects of climate change.
Amount and timing of precipitation control seeding estab-
lishment at low elevation, whereas minimum temperature
and snow depth control germination and survival at high
elevations (Nelson et al. 2014; Poore et al. 2009; Schlaepfer
et al. 2014a). Drought events are projected to increase
in the western United States in the future (IPCC 2014),
although the likelihood of increased drought in the Northern
Rockies Region is uncertain (see Chapter 3). Big sagebrush
ecosystems remain vulnerable to drought, which may affect
germination and survival of seedlings because soil water
content primarily controls seedling survival (Schlaepfer et
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al. 2014a). Big sagebrush seedling survival may be high-
est in intermediate temperature and precipitation regimes
(Schlaepfer et al. 2014b). Even after seedling establishment,
drought and increased summer temperature can affect
survival and growth of adult plants because growth is posi-
tively correlated with winter precipitation and winter snow
depth (Poore et al. 2009). Thus, if drought events increase
in frequency and severity in the Northern Rockies region,
big sagebrush biomass and the abundance and diversity of
perennial grasses and forbs may decrease.

It is uncertain if big sagebrush species can move in
concert with shifting temperature and precipitation regimes
and disperse to available habitat patches and colonize them.
Most big sagebrush seeds (50—60 percent) are not viable in
the seedbank after 2 years, with few viable seed in the upper
soil (Wijayratne and Pyke 2009, 2012). Furthermore, big
sagebrushes are poor dispersers (Schlaepfer et al. 2014a;
Young and Evans 1989) and seed production is episodic
(Young et al. 1989). Even if big sagebrush seeds success-
fully disperse and germinate in response to a changing
climate, probabilities of seedling establishment and adult
survivorship are uncertain because big sagebrushes are
poor competitors relative to associated herbaceous species
(Schlaepfer et al. 2014a).

Big sagebrushes are sensitive to fire and cannot resprout
(Shultz 2006). Recovery from seed dispersal can take 50 to
150 years (Baker 2006, 2011), so postfire recovery may be-
come a problem in the future, if the frequency and intensity
of fires increase as projected (Abatzoglou and Kolden 2011;
Westerling et al. 2006). Regeneration of big sagebrushes
postfire is strongly linked to winter precipitation (Nelson et
al. 2014), which is expected to increase by 10 to 20 percent
in the Northern Rockies region by 2100 (IPCC 2014; Shafer
et al. 2014). Although more frequent fire may result in larger
losses of big sagebrush habitat in the future, recovery of big
sagebrushes may be less impeded. It is also possible that
much of this increased precipitation will come as rainfall
(Klos et al. 2014), which could, in turn, promote herbaceous
growth that might suppress sagebrush recovery in some
instances.

Climate change will result in shifts in the distribution of
conditions suitable to support big sagebrushes and hence the
spatial configuration of big sagebrush habitat, with direct
and indirect effects on sagebrush-dependent species (e.g.,
greater sage-grouse). Several studies using species distribu-
tion modeling (SDM) have projected that big sagebrushes
will move northward and up in elevation in response to
increased winter temperatures and summer drought associ-
ated with climate change (Schlaepfer et al. 2012; Shafer
et al. 2001). Although big sagebrush species may expand
northward and upslope, their habitat is predicted to contract
significantly due to increased soil moisture stress, primarily
at southern latitudes and lower elevations (fig. 7.5).

The probability of big sagebrush regeneration has been
projected to increase at the leading edge of their range (i.e.,
northern range limit) under future climatic conditions, sug-
gesting potential northward range expansion with climate
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Figure 7.5—Mean and standard deviation of percent of subregions burned across three time spans (historic, 2030-2050,

2080-2100) and without/with fire suppression.

change (Schlaepfer et al. 2015). This is in part due to chang-
es in habitat suitability because soil water conditions at the
leading edge will be similar to current soil water patterns in
big sagebrush systems. Habitat suitability for big sagebrush
species is predicted to increase primarily in northeastern and
north-central Montana (Schlaepfer et al. 2015; Schrag et al.
2011) (fig. 7.5). In contrast, habitat suitability is predicted to
decrease in parts of the Western Rockies and northwestern
Greater Yellowstone Area subregions (fig. 7.5), primarily
from summer drought (Schlaepfer et al. 2012; Schlaepfer et
al, in review). However, expansion of big sagebrush species
out of unsuitable habitat and into suitable habitat is con-
tingent on the ability of the species to disperse to available
habitat patches and compete with other species.

In addition to changes in big sagebrush distribution,
shifts in community composition and productivity are
expected with climate change. Because of the uncertainty
about length and severity of drought events in the future, the
projected shifts in community composition and productivity
in big sagebrush ecosystems in response to climate change
remain uncertain. If drought events do increase in the
Northern Rockies region, native herbaceous plant diversity
and cover may be reduced. In contrast, in nondrought years,
warming temperatures and increased levels of CO, may
lead to increased biomass production (Reeves et al. 2014),
more frequent fires, and increases in herbaceous biomass at
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the expense of fire-intolerant shrubs, such as big sagebrush
species.

Paleoecological studies have shown that species move in-
dividualistically and at different rates in response to climate
change, resulting in novel combinations of species (Delcourt
and Delcourt 1981). Even species in the same functional
group (e.g., grasses) may respond differentially to climate
change (Anderson and Inouye 2001). Thus, big sagebrush
plant communities are unlikely to migrate as a unit in
response to altered temperature and precipitation. The
response of individual species to climate change will depend
on both physiological tolerances and competitive ability.

Shifts in disturbance regimes (e.g., fire, insects,
pathogens) associated with climate change may affect big
sagebrush ecosystems in the future. Disturbances affect
vegetation directly by killing individuals and removing
aboveground biomass, and indirectly by altering soil condi-
tions. Climate change and disturbance may have additive
effects on soil water balance in big sagebrush ecosystems,
decreasing soil water content (Bradford et al. 2014) and
resulting in diminished growth and regeneration (Poore et
al. 2009). Increased disturbance frequency could reduce
the spatial extent of big sagebrush in the future, despite
increased habitat suitability and regeneration potential,
because big sagebrush is incapable of resprouting after
disturbance (Shultz 2006). As with other vegetation types,
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there is great uncertainty and variability regarding estimates
of fire return intervals of stands dominated by big sagebrush
species. For example, in the Northern Rockies, Lesica et

al. (2007) suggest that fire return intervals for Wyoming

big sagebrush are longer than for basin big sagebrush and
mountain big sagebrush, and range from 50 to 150 years,
whereas Baker (2011, 2013) and Bukowski and Baker
(2013) estimate ranges of 200 to about 350 years.

The long fire return intervals to which Wyoming big
sagebrush is adapted are related to its very slow postfire
recovery, as low as 2 percent recovery 23 years after fire
(Lesica et al. 2007). The slow recovery of these systems is
partly due to slow growth rates and harsher environmental
conditions in many sites in the Northern Rockies region.
Basin big sagebrush canopy cover development and growth
are faster than for Wyoming big sagebrush (Booth et al.
1990; Lesica et al. 2007; McArthur and Welch 1982).
Invasive annual grasses such as cheatgrass may exacerbate
slow growth.

Big sagebrush ecosystems have some capacity to adapt
to climate change. Big sagebrush species occur over a large
geographic area with high diversity in topography, soils, and
climate, suggesting that these species can withstand a rela-
tively broad range of ecological conditions and may tolerate
shifting climates. Various subspecies of big sagebrush often
hybridize and have a high level of polyploidy, providing them
with the capacity to undergo selection and adapt to shifting
climatic regimes relatively quickly (e.g., Poore et al. 2009).

Although lower soil water availability may pose a threat
to big sagebrush ecosystems, long periods of sustained
drought would be needed to cause mortality (Kolb and
Sperry 1999). Even though big sagebrush habitat suit-
ability is projected to change across space (e.g., decreasing
suitability in northwestern Wyoming and across much of
western Montana), big sagebrush species may still persist in
relatively “unsuitable” habitat for some time, perhaps in a
degraded state.

Risk Assessment

Magnitude of effects: Highly variable. In northwestern
Wyoming and western Montana, the effects of climate
change are likely to be low to moderate. Lower water avail-
ability may cause declines in big sagebrush growth and
regeneration, facilitating some habitat contraction. However,
big sagebrush species may expand northward into northern
and eastern Montana, as habitat suitability increases in fu-
ture decades. Despite this generalization, it is also possible
that an increase in fire activity will decrease the extent of
big sagebrush communities in many locations.

Likelihood of effects: Variable. Some contraction in big
sagebrush habitat may occur in northwestern Wyoming and
western Montana, particularly at lower elevations, because
of increased temperature and evapotranspiration. However,
if big sagebrush can successfully exploit changing climatic
conditions, the total area covered by big sagebrush species
in the Northern Rockies region may increase by the end of
the 215! century. Potential expansion may be tempered by
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faster rates of loss if the cheatgrass-fire cycle tracks new
habitats in the northeastern part of the region. It is conceiv-
able that drier sites, such as those with sandy soils, may lose
the ability to regenerate sagebrush, whereas more mesic
sites might still be able to regenerate.

Communities Dominated by Low Sagebrushes
(Black and Low Sagebrush)

The current distribution of low sagebrush ecosystems in
the Northern Rockies region is restricted to about 1 percent
of the total sagebrush habitat as indicated in the LANDFIRE
existing vegetation type (EVT) database. The western por-
tion of the Northern Rockies region contains 50 percent
of the low sagebrush habitat, but limited patches are also
found in the Eastern Rockies subregion and in the Greater
Yellowstone Area subregion, especially on the western edge.
Most of these sites support low sagebrush but not black
sagebrush. Low sagebrush sites are characterized as rela-
tively low-production areas over shallow, claypan soils that
restrict drainage and root growth. Low sagebrush is found
on altitudinal gradients from 2,300 feet to more than 11,500
feet (Beetle and Johnson 1982), and it is generally found
between 6,000 and 9,000 feet in Montana and Idaho. In
contrast, black sagebrush is considerably more restricted in
ecological amplitude and is found on shallow, dry, infertile
soils. Current stressors are predominantly improper use by
livestock and invasion by nonnative species.

Despite growing across a broad range of elevations, low
and black sagebrush are less common than other sagebrush
species. Thus, it is reasonable to assume that as climates
change, ranges could be further restricted, resulting in small
islands being isolated, although this is more likely for black
sagebrush because of its poor competitive ability (West and
Mooney 1972). Both species depend heavily on seeding
for reproduction (Wright et al. 1979) and recovery from
disturbance. In addition, several traits make low sagebrush
species sensitive to climate change. There is high mortal-
ity in the first year of growth (Shaw and Monsen 1990).
Establishment is probably greatest when a thin layer of soil
covers the seeds, and if erosion increases from drought-
induced reductions of plant cover, the already thin soils
may not provide suitable seedbeds for germination. Seed
development and establishment are best in years with ample
precipitation, and if unfavorable conditions for seeding
persist following disturbance, it is reasonable to assume that
low sagebrush species may disappear from some stands, es-
pecially if annual grass invasion occurs concomitantly with
unfavorable growth conditions.

Climate change will result in shifts in the distribution of
conditions suitable to support low sagebrush species and
hence the spatial configuration of low sagebrush habitats.
Both low and black sagebrush are intolerant of fire and do
not resprout. Therefore, increased fire activity will have
negative consequences for both species. Fire return intervals
vary considerably among communities dominated by low
sagebrush species. Estimates of fire return intervals for xeric
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sagebrush communities of the Great Basin range from 35
to more than 100 years (Brown 2000; Riegel et al. 2006),
but intervals of 100 to 200 years for low-productivity black
sagebrush communities have been reported. Especially for
black sagebrush, which usually occupies quite unproductive
sites with small buildup of fuels, these fire return intervals
may be overestimated (Baker 2013). Within the boundaries
and on the periphery of the Greater Yellowstone Area subre-
gion, MC2 results indicate that the proportion of landscape
burned will increase substantially in the future (fig. 7.6),
allowing a higher likelihood of ignition and flaming fronts
to reach some low sagebrush communities. The extent to
which these sites will carry fire depends on herbaceous pro-
duction and probably on magnitude of invasion by annual
grasses (especially cheatgrass). In summary, climate change
may influence low sagebrush systems by reducing seedling
establishment in unfavorable years. In addition, projected
increased fire activity will decrease the abundance of low
sagebrush relative to other species, especially if nonnative
annual grasses, such as medusahead (7aeniatherum caput-
medusae) and cheatgrass, become more prevalent.

Relative to other sagebrush species, low and black
sagebrush have limited adaptive capacity. Black sagebrush
hybridizes with silver sagebrush, and sprouting is thought
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to be a heritable trait in crosses between nonsprouting and
sprouting sagebrushes (McArthur 1994). In the Northern
Rockies region, however, it is unlikely that silver sagebrush
will exhibit a significant presence in areas that support

low sagebrush; the distribution of these species is usually
disjunctive, so the possibility of inheriting sprouting traits
is unlikely. In addition, the relatively low productivity
characterizing low sagebrush sites may also limit adaptive
capacity, especially if other risk factors are present.

Risk Assessment

Magnitude of effects: High. The resilience of many of
these areas is low given the thin and argillic soil properties
characterizing these sites. The magnitude of effects is likely
to increase if other perturbations such as improper recre-
ational or grazing schemes are present. The low adaptive
capacity of this sagebrush type, intolerance of fires, and low
rate of reproduction act in concert to increase the magnitude
of effects.

Likelihood of effects: Moderate to high. Models suggest
increased production at higher elevations (Reeves et al.
2014), increasing the likelihood of fires carrying through
otherwise relatively unburnable landscapes. The problem of
increased flammability will increase, especially if invasive

Figure 7.6—Change in big sagebrush
habitat suitability (a—d) based on
species distribution models using
climate (c)-(d) or ecohydrology (a)-
(b), along with germination (e) and
seedling survival potential (f) for NR
(outlined in bold). Projected change
in big sagebrush habitat suitability
is between 1970-1999 climate and
future A2 scenario (a)-(c) and B1
scenario (b)-(d) 2070-2099 emission
scenarios. Red cells indicate areas
of decrease in big sagebrush habitat
suitability, blue cells indicate areas
of increase, white cells indicate
stable areas, and gray cells indicate
absence of big sagebrush. Maps
of germination (e) and seedling
survival (f) represent current
conditions and are summarized as
fraction of years with successes: red
(0, no years with success), tan (>0),
green (1, every year with success).
Black cells indicate data not
available (data source: Schlaepfer et
al. 2012).
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annual grasses exhibit a significant presence on short sage-
brush sites in the future.

Shrublands Dominated by Sprouting
Sagebrush Species (Threetip and
Silver Sagebrush)

Significant areas of threetip and silver sagebrush shrub-
lands have been converted to agricultural lands. Those
that remain are often used for domestic livestock grazing
because of the palatable herbaceous undergrowth in this
sagebrush type. Those that have had chronic improper graz-
ing typically have a large amount of bare ground, low vigor
of native herbaceous species, and as a result, nonnative plant
species present in varying amounts. Prolonged improper
livestock grazing, native ungulate herbivory, and nonnative
invasive plants are the primary stressors. Loss of topsoil
can occur if vegetation cover and density decline and bare
ground increases, primarily caused by ungulate impacts
(e.g., grazing and mechanical/hoof damage) (Sheatch and
Carlson 1998; Washington-Allen et al. 2010).

Both species can sprout from the root crown following
top kill (primarily from fire) (Bunting et al. 1987), but this
trait depends on site conditions and fire severity. Silver
sagebrush is a vigorous sprouter (Rupp et al. 1997), whereas
threetip sagebrush is less successful as a sprouter, and its
response varies with site characteristics (Akinsoji 1988;
Bunting et al. 1987). Both species occur on mesic sites;
threetip sagebrush is often associated with mountain big
sagebrush communities, and silver sagebrush typically oc-
cupies moist riparian benches or moist toe slopes. Although
these species will sprout, increased fire frequency and sever-
ity (particularly in threetip communities) may cause a shift
in community composition to dominance by fire-adapted
herbaceous species or nonnative species. Other fire-adapted
shrub species may increase, particularly following fire. In
addition, if spring and winter precipitation increase, exotic
annual grasses may establish and set seed earlier than the
native perennial grasses, particularly in lower elevation
communities (Bradley 2008; D’ Antonio and Vitousek
1992). This creates an uncharacteristic, continuous fine fuel
load that can burn by late spring/early summer, burning
sagebrush and native grasses often before they have matured
and set seed (Chambers and Pellant 2008). Other nonnative
invasive species respond favorably after fire, and, if present,
will increase in cover and density.

Historical fire return intervals for both species are
relatively short and research shows that threetip sagebrush
cover can return to preburn levels 30 to 40 years after fire
(Barrington et al. 1988; Neuenschwander n.d.). Lesica et
al. (2007) found that after a fire in southwestern Montana,
threetip sagebrush cover did not increase by resprouting, but
instead established from seed. These generalizations will
vary considerably depending on site conditions and postfire
management. All three subspecies of silver sagebrush sprout
after fire, and along with threetip, also typically occur on
more mesic sites. With a warmer and drier climate, not only

USDA Forest Service RMRS-GTR-374. 2018
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may frequent high-severity burns cause initial mortality, but
sites may not be as favorable for postfire vegetation regen-
eration (from sprouting, regrowth, or seed). Invasive species
are likely either to expand into these communities after fire
or to increase in abundance in altered conditions that are
less favorable to the native plant community.

Understory composition in both communities may
possibly shift to more-xeric grassland species (e.g., blue-
bunch wheatgrass, needle-and-thread grass [Hesperostipa
comata)), which are better adapted to warmer and drier con-
ditions. Both of these sagebrush species may shift landscape
position to sites with more moisture and cooler temperature
(e.g., higher elevation, lower landscape position, and north-
east aspects).

Risk Assessment

Magnitude of effects: Moderate
Likelihood of effects: High

Mountain Big Sagebrush Shrublands

Some areas of mountain big sagebrush shrublands have
been converted to agricultural lands, and those that remain
are used for domestic livestock grazing, primarily because
of the palatable herbaceous undergrowth. Those that have
had chronic improper grazing typically have high bare
ground and low vigor of native herbaceous species; as a re-
sult, nonnative plant species are present in varying amounts.
Prolonged improper livestock grazing, native ungulate
herbivory, and invasive nonnative plants are the primary
stressors. Loss of topsoil can occur if vegetation cover and
density decline and bare ground increases due to improper
grazing and other impacts, primarily caused by ungulates
(e.g., grazing and mechanical/hoof damage). Lack of fire is
also a chronic stressor, facilitating establishment of conifers,
which increase in density and cover over time (Arno and
Gruell 1986; Heyerdahl et al. 2006) while grass cover de-
clines (Arno and Gruell 1983).

Mountain big sagebrush is killed by fire. If fire severity
and frequency increase, there will be a shift in com-
munity composition to dominance by fire-adapted shrub
and herbaceous species and possibly nonnative species.
Fire-adapted shrub species may increase in abundance
following fire (Fischer and Clayton 1983; Smith and
Fischer 1997). In addition, if spring and winter precipita-
tion increase, establishment of nonnative annual grasses
(particularly cheatgrass, which germinates in winter/early
spring) may be facilitated, although this is less likely in
cooler, moister mountain big sagebrush communities than
in lower elevation Wyoming and basin big sagebrush
communities. With a warmer, drier climate, however, the
conditions may be conducive to cheatgrass establishment.
An abundance of cheatgrass creates an uncharacteristic,
continuous fine fuel load that can burn by late spring/early
summer, burning sagebrush and native perennial grasses
often before they have matured and set seed (Chambers et
al. 2007; Pellant 1990; Whisenant 1990), especially in the
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Great Basin. However, other research in the northern edge
of the Great Basin indicates that some sagebrush com-
munities may be less susceptible to cheatgrass invasion
following fire, at least under the current climate (Lavin

et al. 2013; Seefeldt et al. 2007). Other nonnative species
respond favorably after fire and, if present, will increase in
cover and density.

Historically, the fire return intervals were relatively
short but variable—a few decades (Lesica et al. 2007) to
more than 100 years (Baker 2013)—compared to Wyoming
big sagebrush habitat (more than 100 years) (Heyerdahl
et al. 2006; Lesica et al. 2005, 2007). Mountain big sage-
brush regenerates from seeds shed from nearby unburned
plants. It will fully recover between 15 and 40 years after
fire (Bunting et al. 1987), depending on site characteristics
and fire severity. In a warmer and drier climate, frequent
high-severity burns (facilitated by cheatgrass) may not
cause initial mortality and create unfavorable conditions
for postfire regeneration (from sprouting, regrowth, or
seed). There is no viable sagebrush seedbank; if fires burn
large areas and there are no live, seed-bearing sagebrush
nearby, there may be a type conversion to grassland. In
addition, invasive nonnative species are likely either to ex-
pand into these areas after fire, or to increase in abundance
due to altered conditions that no longer favor the native
plant community (Bradley 2008; D’ Antonio and Vitousek
1992).

Mountain big sagebrush is not fire adapted, and may
decline in cover and density or be extirpated in response to
warmer temperatures and increased fire frequency and se-
verity. Over time, especially if fine fuels such as senesced
cheatgrass are present, more frequent fires may eliminate
mountain big sagebrush from a community (Chambers and
Pellant 2008; D’ Antonio and Vitousek 1992; Whisenant
1990). However, because mountain big sagebrush occurs
at higher elevations, typically on more productive cooler,
mesic sites, these communities are typically less invaded
by nonnative species. If these sites become warmer and
drier, however, herbaceous understory composition could
shift to more xeric species that are better adapted, and bare
ground may increase (Chambers et al. 2014). As a result,
invasive species, particularly cheatgrass, could expand into
and establish dominance in these altered communities.

The distribution of mountain big sagebrush possibly
may shift to cooler and moister sites (e.g., higher eleva-
tion, northeast-facing snow-filled depressions). With
climate change, it may be able to persist only in sites with
higher moisture and deeper soils than the surrounding
landscape. Understory composition may shift to more-
xeric grassland species, that are more tolerant of warmer,
drier conditions.

Risk Assessment

Magnitude of effects: Moderate
Likelihood of effects: Moderate
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Adapting Rangeland Vegetation
Management to Climate Change
in the Northern Rockies Region

Rangeland vegetation in the Northern Rockies Region
is likely to be affected by changing fire regimes, increased
drought, and increased establishment of invasive species in
a changing climate. Effects of climate change will also com-
pound existing stressors on rangeland ecosystems caused by
human activities. Thus, adaptation strategies and tactics for
rangeland vegetation focused on increasing the resilience of
rangeland ecosystems, primarily through invasive species
control and prevention (table 7.3).

To control invasive species in rangelands, managers
stressed the importance of using ecologically based invasive
plant management (EBIPM) (Krueger-Mangold et al. 2006;
Sheley et al. 2006). The EBIPM framework focuses on strat-
egies to repair damaged ecological processes that facilitate
invasion (James et al. 2010). For example, prescribed fire
treatments can be used where fire regimes have been altered,
and seeding of desired natives can be done where seed
availability and dispersal of natives is low.

Another adaptation strategy is to increase proactive
management actions to prevent establishment of invasive
species. Early detection, rapid response (EDRR) for new in-
vasions was the most frequently suggested tactic to prevent
invasive species establishment. Other tactics include imple-
menting weed-free policies, conducting outreach to educate
employees and the public about invasive species (e.g., teach
people to clean their boots), and developing weed manage-
ment areas that are collaboratively managed by multiple
agencies, nongovernmental organizations, and the public.

In addition to invasive species control and prevention,
grazing management will be important in maintaining
and increasing resilience of rangelands to climate change.
Climate changes will lead to altered availability of forage,
requiring some reconsideration of grazing strategies. For ex-
ample, reducing grazing in July and August may encourage
growth of desired perennials in degraded systems. Livestock
grazing can also be managed through the development of
site-specific within-season triggers and end point indicators
that would inform livestock movement guides and allow for
the maintenance and enhancement of plant health.

A changing climate has led to a decline of pollinators
in some communities (Potts et al. 2010) and may lead to
phenological mismatches between pollinators and host
plants (Forrest 2015). Pollinator declines may negatively
affect the health of grasslands in the Northern Rockies, and
encouraging native pollinators may be key to sustaining
these ecosystems. Tools to promote native pollinators in-
clude revegetation with native species, appropriate herbicide
and insecticide use, and education. Implementing long-term
monitoring of pollinators can help to identify where treat-
ments can be prioritized.

USDA Forest Service RMRS-GTR-374. 2018
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In montane shrublands, existing stressors include fire
exclusion and conifer establishment, browsing by both
native and domestic ungulates, and insects and disease.
Characteristic species can be lost in these systems with loss
of topsoil following frequent, hot fires. Warmer tempera-
tures and drier conditions with climate change may lead to
an increase in high-severity fires. Adaptation tactics include
implementing fuel reduction projects such as brush cutting,
slashing, mastication, and targeted browsing; reestablishing
appropriate fire regimes may prove beneficial in maintaining
these shrublands and increasing their resilience. To control
invasive vegetation, EDRR and EBIPM can be applied,
along with maintenance of adequate shrub cover, vigor,
and species richness. Educating specialists on ecology and
disturbances affecting shrublands, effects of repeated burns,
reforestation needs, and reporting on weeds will also help to
maintain these systems.

More specific details on adaptation strategies and tactics
that address climate change effects on rangeland vegetation
in each Northern Rockies Adaptation Partnership subregion
are in Appendix 7A.
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Appendix 7A—Adaptation Options for Nonforest
Vegetation in the Northern Rockies.

The following tables describe climate change sensitivities and adaptation strategies and tactics for nonforest vegetation,
developed in a series of workshops as a part of the Northern Rockies Adaptation Partnership. Tables are organized by sub-

region within the Northern Rockies. See Chapter 7 for summary tables and discussion of adaptation options for nonforest
vegetation.
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Chapter 8: Effects of Climate Change on
Ecological Disturbance in the Northern

Rockies Region

Rachel A. Loehman, Barbara J. Bentz, Gregg A. DeNitto, Robert E. Keane,
Mary E. Manning, Jacob P. Duncan, Joel M. Egan, Marcus B. Jackson, Sandra
Kegley, 1. Blakey Lockman, Dean E. Pearson, James A. Powell, Steve Shelly,

Brytten E. Steed, and Paul J. Zambino

Introduction

This chapter describes the ecology of important dis-
turbance regimes in the Forest Service, U.S. Department
of Agriculture (USFS) Northern Region and the Greater
Yellowstone Area, hereafter called the Northern Rockies re-
gion, and potential shifts in these regimes as a consequence
of observed and projected climate change. The term dis-
turbance regime describes the general temporal and spatial
characteristics of a disturbance agent—insect, disease, fire,
weather, even human activity—and the effects of that agent
on the landscape (table 8.1). More specifically, a disturbance
regime is the cumulative effect of multiple disturbance
events over space and time (Keane 2013). Disturbances dis-
rupt an ecosystem, community, or population structure and
change elements of the biological environment, physical en-
vironment, or both (White and Pickett 1985). The resulting
shifting mosaic of diverse ecological patterns and structures
in turn affects future patterns of disturbance, in a reciprocal,
linked relationship that shapes the fundamental character
of landscapes and ecosystems. Disturbance creates and
maintains biological diversity in the form of shifting, hetero-
geneous mosaics of diverse communities and habitats across
a landscape (McKinney and Drake 1998), and biodiversity
is generally highest when disturbance is neither too rare nor
too frequent on the landscape (Grime 1973).

A changing climate may already be altering charac-
teristics of disturbance agents, events, and regimes, with
additional effects expected in the future (Dale et al. 2001).
Climate changes can alter the timing, magnitude, frequency,
and duration of disturbance events, as well as the interac-
tions of disturbances on a landscape. Interactions among
disturbance regimes, such as the co-occurrence in space
and time of bark beetle (Dendroctonus spp.) outbreaks
and wildfires, can result in highly visible, rapidly occur-
ring, and persistent changes in landscape composition and
structure. Understanding how altered disturbance patterns
and multiple disturbance interactions might result in novel
and emergent landscape behaviors is critical for addressing
climate change impacts and for designing land management

USDA Forest Service RMRS-GTR-374. 2018

strategies that are appropriate for future climates (Keane et
al. 2015).

We summarize five disturbance types present in the
Northern Rockies region that are sensitive to a changing
climate. Wildfires, bark beetles, white pine blister rust
(Cronartium ribicola), other forest diseases, and nonnative
plant invasions acting individually or synergistically can
transform landscape patterns and ecological functions.
This chapter provides background that can help managers
understand the important role of disturbances on Northern
Rockies landscapes, and anticipate how, when, where, and
why climate changes may alter the characteristics of distur-
bance regimes.

Wildfire

Overview

Wildland fire is ubiquitous throughout forest ecosystems
of the Northern Rockies and was historically the most
important and extensive landscape disturbance in the region
(Hejl et al. 1995). Wildfire emerged as a dominant process
in North America after the end of the last glacial period,
about 16,500 to 13,000 years B.P., commensurate with
rapid climate changes and increased tree cover (Marlon
et al. 2009). In the Northern Rockies region, many forest
types are fire-prone and fire adapted, meaning that fire is an
integral and predictable part of their maintenance and eco-
logical functioning. Wildfire, as well as other disturbances
such as insect outbreaks, disease, drought, invasive species,
and storms, is part of the ecological history of most forest
ecosystems, influencing vegetation age and structure, plant
species composition, productivity, carbon (C) storage, water
yield, nutrient retention, and wildlife habitat (Agee 1993).

Climate and fuels are the two most important factors
controlling patterns of fire in forest ecosystems. Climate
controls the frequency of weather conditions that promote
fire, whereas the amount and arrangement of fuels influ-
ence fire intensity and spread. Climate influences fuels on
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Table 8.1—Characteristics used to describe disturbance regimes.?
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Disturbance

characteristic Description

Example

Agent Factor causing the disturbance

Source, cause  Origin of the agent

Frequency How often the disturbance occurs or its
return time

Intensity A description of the magnitude of the
disturbance agent

Severity The level of impact of the disturbance on the
environment

Size Spatial extent of the disturbance

Pattern Patch size distribution of disturbance effects;
spatial heterogeneity of disturbance effects

Seasonality Time of year at which a disturbance occurs

Duration Length of time that disturbances occur

Disturbances interact with each other,
climate, vegetation, and other landscape
characteristics

Interactions

Variability Spatial and temporal variability of the above

factors

Mountain pine beetle is the agent that kills trees
Lightning is a source for wildland fire

Years since last fire or beetle outbreak (scale dependent)

Mountain pine beetle population levels; wildland fire heat
output

Percent mountain pine beetle tree mortality; fuel consumption
in wildland fires

Mountain pine beetles can kill trees in small patches or across
entire landscapes

Fire can burn large regions but weather and fuels can
influence fire intensity and therefore the patchwork of tree
mortality

Species phenology can influence wildland fire effects; spring
burns can be more damaging to growing plants than fall burns
on dormant plants

Mountain pine beetle outbreaks usually last for 3-8 years;
fires can burn for a day or for an entire summer

Mountain pine beetles can create fuel complexes that
facilitate or exclude wildland fire

Highly variable weather and mountain pine beetle mortality
can cause highly variable burn conditions resulting in patchy
burns of small to large sizes

a4 From Keane (2013).

longer time scales by shaping species composition and
productivity (Dale et al. 2001; Marlon et al. 2008; Power

et al. 2008), and large-scale climatic patterns such as the

El Nifio Southern Oscillation (ENSO) and Pacific Decadal
Oscillation (PDO) are important drivers of forest productiv-
ity and susceptibility to disturbance (Collins et al. 2006;
Kitzberger et al. 2007). Current and past land use, including
timber harvest, forest clearing, fire suppression, and fire
exclusion through grazing have affected the amount and
structure of fuels in the United States (Allen et al. 2002;
Falk et al. 2011; Pausas and Keeley 2014).

Disturbance effects can overwhelm the direct effects of
climate changes on ecosystems. As described in other chap-
ters in this publication, climate changes influence forests
directly; for example, it has been suggested that drought
and heat stress are linked to increased tree mortality, shifts
in species distributions, and decreased productivity (Allen
et al. 2010; Van Mantgem et al. 2009; Williams et al. 2013).
However, the most visible and significant short-term effects
of climate changes on forest ecosystems will be caused by
altered disturbances, often occurring with increased fre-
quency and severity. The warmer, drier conditions expected
with climate change are likely to increase fire frequency, fire
season length, and cumulative area burned in the coming
decades in the western United States (Flannigan et al. 2006;
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McKenzie et al. 2004). Climate changes may also increase
the frequency or magnitude of extreme weather events that
affect fire behavior (Kurz et al. 2008b; Lubchenco and Karl
2012). Although shifts in vegetation composition and dis-
tribution caused by climate alone may occur over decades

or centuries, wildfires can temporarily or persistently reorga-
nize landscapes over a period of days (Overpeck et al. 1990;
Seidl et al. 2011).

The role of fire in ecosystems and its interactions with
dominant vegetation is termed a “fire regime” (Agee 1993).
Fire regimes are defined by fire frequency (mean number
of fires per time period), extent, intensity (measure of the
heat energy released), severity (net ecological effect), and
seasonal timing (table 8.2). These characteristics vary across
vegetation types and depend on the amount and configura-
tion of live and dead fuel present at a site, environmental
conditions that favor combustion, and ignition sources
(Agee 1993; Krawchuk et al. 2009). Ecosystems in the
Northern Rockies have been subject to a range of historical
fire regimes, including (1) frequent (1-35 years), low- or
mixed-severity fires that replaced less than 25 percent of
the dominant overstory vegetation; (2) moderate-frequency
(35200 years), mixed-severity fires that replaced up to 75
percent of the overstory; and (3) infrequent (200+ years),
high-severity fires that replaced greater than 75 percent of

USDA Forest Service RMRS-GTR-374. 2018
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Table 8.2— Risk assessment for fire regime changes.?

EFFECTS OF CLIMATE CHANGE ON ECOLOGICAL DISTURBANCE IN THE NORTHERN ROCKIES REGION

Predicted
Fire regime direction of Likelihood of
component change Main driver(s) of change Projected duration of change change
Ignitions Unknown Changes in lightning frequency and ~ Unknown Unknown
anthropogenic ignitions
Area burned Increase Increased fire season length, Until a sufficient proportion of High
decreased fuel moistures, increased  the landscape has been exposed
extreme fire conditions to fire, thus decreasing fuel
loads and increasing structural
and species heterogeneity
Fire frequency Increase Increased ignitions, increased fuel In forested systems until a Moderate
loads, decreased fuel moistures, sufficient proportion of the
increased fire season length landscape has been exposed
to fire, reducing fuel loads
and continuity; in grass- and
shrubland systems, until global
climate stabilizes
Average fire size Increase Increased fire season length, Until a sufficient proportion of High
decreased fuel moistures, increased  the landscape has been exposed
extreme fire conditions to fire, thus increasing the
likelihood that previous fires
will restrict growth of current
year fires
Fire season Increase Increased temperatures, decreased Until the global climate system High
length precipitation, decreased winter stabilizes; predicted to increase
snowpack, decreased runoff as climate changes become
more severe
Fire severity Increase Decreased fuel moistures, increased  In dry forest types, until fires Moderate

extreme fire conditions

decrease surface fuel loads; in
mesic forests, if increased fire
frequency decreases fuel loads

2 Developed using expert opinion and information from literature as summarized in this chapter.

the dominant overstory vegetation (fig. 8.1). More-detailed
information on fire regimes specific to individual vegetation
species and vegetation types can be found in Chapter 6 of
this volume.

Wildland fire behavior is influenced by variability in
environmental conditions including vegetation type and dis-
tribution, climate, weather, and topography. Despite major
human influences on western U.S. wildfires since Euro-
American settlement, climate is generally considered to be
the primary control on fire regimes in the region, influencing
vegetation production and condition as well as the physical
environment (Marlon et al. 2012). Where rates of vegetation
production outpace decomposition, sufficient biomass is
available to support fires, although higher elevation regions
with abundant fuels do not always have sufficiently dry
conditions to sustain a fire. In these systems, short-duration
drying episodes generally do not create dry enough condi-
tions to sustain a fire, but prolonged dry weather conditions
(about 40 days without precipitation) can sufficiently dry
live fuels and larger dead fuels to carry large, intense fires

USDA Forest Service RMRS-GTR-374. 2018

once they are ignited (Schoennagel et al. 2004). Wildland
fuels lose moisture and become flammable in warm and dry
summers typical in the Northern Rockies region, during
which time there are ample sources of ignition from light-
ning strikes and humans. Therefore, the active fire season
(period conducive to active burning) is in the summer, typi-
cally from late June through October, with shorter seasons at
higher elevation sites, where snowpack can persist into July
(Littell et al. 2009).

At annual time scales, weather is the best predictor of fire
characteristics such as area burned and fire size. Correlations
between weather and annual area burned by fire or the
number of large fires are similar for both pre-20t-century
fires and fires that have occurred during the past few de-
cades. Fire-weather relationships have been constructed for
forested ecosystems of the Pacific Northwest (Hessl et al.
2004; Heyerdahl et al. 2002, 2008a) and Northern Rockies
(Heyerdahl et al. 2008b; Littell et al. 2009; Westerling et al.
2003, 2006), based on tree-ring and fire-scar records and
independently reconstructed climate, or observations of fire
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Figure 8.1—Fire regime groups
for the Northern Rockies,
LANDFIRE mapping program.
The fire regime group layer
characterizes the presumed
historical fire regimes
within landscapes based on
interactions among vegetation
dynamics, fire spread, fire
effects, and spatial context
(see http://www.landfire.gov/

NationalProductDescriptions12.
php).

Fire Regime Group
[ 1 35 - 200 Year Fir Roturm interval, Low and Moosd Seventy
I 25 - 200 Year Fire Rahatn inderval, Replacement Severity
[ <= 35 Yoas Fire Retum irserval, Low and Moosd Saverty
[ <= 25 vear Fire Rotum Interval, Ragiacement Sevonty
I - 204 Year Fire Raham Interval, Any Severity

() horinem Rockies Subreganal Areas

events and weather in the seasons leading up to and during
the fire where records are available. Regionally, widespread
fire years are correlated with drought (Heyerdahl et al.
2008b; Morgan et al. 2008), and these regionally synchro-
nous fires have generally occurred in the Northern Rockies
(Idaho and western Montana) during years with relatively
warm spring-summers and warm-dry summers (Heyerdahl
et al. 2008a; Morgan et al. 2008).

In nonforested systems in the eastern Northern Rockies,
precipitation amount, at both short (weeks to months)
(Littell et al. 2009) and long (decades to centuries) (Brown
et al. 2005) time scales is the dominant control on fire.
During the fire season, the amount and timing of precipita-
tion largely determine availability and combustibility of
fine fuels, and short periods of dry weather are sufficient
to precondition these systems to burn (Gedalof et al. 2005;
Westerling and Swetnam 2003). In contrast to the grasslands
of the southwestern United States, antecedent precipitation
has not been found to be a significant driver of large fires in
the northern grasslands; rather, large fires are most strongly
correlated with low precipitation, high temperatures, and
summer drought (July through September) in the year of the
fire (Littell et al. 2009).

Humans are also important drivers of wildfire, via altered
ignition patterns associated with land clearing and land
cover change, agriculture, introduction of exotic species,
and fire management (fuels treatments and fire suppres-
sion/exclusion). Grazing and the introduction of nonnative
species have altered ecological processes that affect fire,
including fuel loading and continuity, forest composition
and structure, nutrient cycling, soils, and hydrology (Marlon
et al. 2009; Swetnam et al. 1999). For many sagebrush
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ecosystems of low to moderate productivity, fire intervals
are 10 to 20 times shorter today than what is estimated

for pre-20th-century conditions (Peters and Bunting 1994;
Whisenant 1990; see also Chapter 7), because of the spread
and dominance of the nonnative annual cheatgrass (Bromus
tectorum). Dry forests, shrublands, and grasslands in the
region exist in a state of “fire deficit” as the result of fire
exclusion, leading to less frequent wildfire, higher stand
densities, higher fuel quantities, and higher fuel continuity.
This has increased the potential for crown fires in forests
with a history of low-severity fire regimes (Agee 1998;
Peterson et al. 2005) and in some forests with mixed-
severity regimes (Taylor and Skinner 2003).

Wildfire Shapes Landscape Patterns

The composition and structure of forests in the Northern
Rockies is determined by climate, elevation, topographic
position, and history of fire. In general, fire regimes vary
along environmental gradients, with fire frequency decreas-
ing and fire severity increasing with elevation (although
aspect and slope position can influence fire patterns). For ex-
ample, low-severity fires are typical in many ponderosa pine
(Pinus ponderosa) forests at low elevations. Historically,
fires here burned frequently enough to maintain low fuel
loads and an open stand structure, producing a landscape in
which fire-caused mortality of mature trees was rare (Agee
1998; Jenkins et al. 2011; Moritz et al. 2011). Adaptive traits
such as thick bark also allowed mature ponderosa pines to
survive many repeated fires over time. Conversely, high-
severity fires occurring at intervals of more than 300 years
are typical in subalpine forests and tend to result in high
mortality of mature trees (“stand replacement”) because

USDA Forest Service RMRS-GTR-374. 2018
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Figure 8.2—Mean fire return
interval for the Northern
Rockies, LANDFIRE mapping
program. The mean fire return
interval layer quantifies the
average period between
fires under the presumed
historical fire regime (see
http://www.landfire.gov/
NationalProductDescriptions13.

php for more information).

Mean Fire Return Interval

M-z [ nx
B 2= [ 3050
[lsw o
[ Tws N rs00

520 N 10013
() Monteen Rockies Sebwegionsl Arsas

long intervals between fires result in dense, multi-storied were historically infrequent, fire exclusion has not altered
forest structures that are susceptible to crown fires (Agee fire regimes (Romme and Despain 1989; Schoennagel et al.
1998) (fig. 8.2). 2004). For example, large, stand-replacing fires occasionally
Fire exclusion since the 1920s has increased surface occurred in lodgepole pine (Pinus contorta var. latifolia)
fuel loads, tree densities, and ladder fuels, especially in forests in Yellowstone National Park (Romme 1982), and

low-elevation dry conifer forests (Schoennagel et al. 2004) many (but not all) lodgepole pine trees can regenerate prolif-
(fig. 8.3). As a result, fires in these forests may be larger and  ically when heating from fires releases seed from serotinous
more intense, and may cause higher rates of tree mortality cones (Schoennagel et al. 2003).

than historical fires. In higher elevation forests where fires

Figure 8.3—Vegetation condition
class for the Northern Rockies,
LANDFIRE mapping program.
The vegetation condition class
layer quantifies the amount that
current vegetation has departed
from the simulated historical
vegetation reference conditions
(see http://www.landfire.gov/
NationalProductDescriptions10.

php).

USDA Forest Service RMRS-GTR-374. 2018 321
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Wildfires and Forest Carbon Sequestration

Concerns about projected changes in global climate have
raised an expectation that forests can help mitigate climate
changes via management for increased carbon sequestration
and storage (Sommers et al. 2014). Forests contain large
reservoirs of carbon in soils (~45 percent of total storage),
aboveground and belowground live biomass (~42 percent),
dead wood (~8 percent), and litter (~5 percent) (Pan et al.
2011). The carbon sequestration potential of Earth’s forests
is about 33 percent of global emissions from fossil fuels
and land use (Denman 2007), and North American forests
currently offset about 13 percent of annual continental fossil
fuel emissions (Pacala et al. 2007). The potential for forests
to mitigate climate change depends on human activities
such as land use and land management, and environmental
factors such as vegetation composition, structure, and distri-
bution, disturbance processes, and climate (Loechman et al.
2014).

Carbon typically accumulates in woody biomass and
soils for decades to centuries until a disturbance event such
as wildfire releases this stored carbon into the atmosphere
(Goward et al. 2008). Wildfire in forested ecosystems is one
of the primary disturbances that regulate patterns of carbon
storage and release (Kasischke et al. 2000). The amount and
rate of carbon release from a wildfire depend on the extent
and severity of the fire, as well as pre-disturbance site condi-
tions and productivity (Bigler et al. 2005; Dale et al. 2001;
Falk et al. 2007). For example, high-severity fires typical
of mid-to-upper elevation forests in the Northern Rockies
region may consume a large amount of aboveground bio-
mass, resulting in an instantaneous pulse of carbon (i.e., the
area affected becomes a carbon source to the atmosphere);
however, these fires typically occur infrequently, and carbon
is stored in woody biomass as forests regrow. Low-severity
fires such as those that occur in low-elevation dry forest
types typically release less carbon per fire event (although
total emissions are dependent on area burned) at more fre-
quent intervals than with stand-replacing regimes, and favor
long-lived and fire-resistant (or tolerant) forest species that
typically survive multiple fire events (Ritchie et al. 2007).
Carbon losses from wildland fire are balanced by carbon
capture from forest regrowth across unmanaged fire regimes
and over multiple decades, unless a lasting shift in dominant
plant lifeform occurs or fire return intervals change (Kashian
et al. 2006; Wiedinmyer and Neff 2007).

There are several important ideas to consider when man-
aging forests and fires for carbon resources. First, as stated
above, unless structural or functional ecosystem shifts occur,
net carbon balance in disturbance-adapted systems at steady
state is zero when assessed over long time periods and at
large spatial scales. Under these conditions, although a fire
may result in a temporary loss of stored carbon from a forest
to the atmosphere (i.c., the forest temporarily becomes a
carbon source), this effect is transitory and balanced by car-
bon accumulation as the forest regrows. The time required
for the postfire environment to shift from carbon source to
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sink varies among forest types and climates. For example,
in simulations of effects of stand-scale fuels treatments on
carbon-fire relationships in Northern Rockies forests, post-
fire carbon recovery occurred in 10 to 50 years, depending
on vegetation type and whether stands were treated before
fire to reduce woody fuels (Reinhardt and Holsinger 2010).

Second, quantifying or projecting wildland fire emissions
is difficult because their amount and character vary greatly
from fire to fire, depending on biomass carbon densities,
quantity and condition of consumed fuels, combustion
efficiency, and weather (Loehman et al. 2014). Emissions
measured for an individual fire event may not be character-
istic of large-scale emissions potential, because of complex
ecological patterning and spatial heterogeneity of burn
severity within fire perimeters. Although long intervals
between wildfires can allow carbon to accumulate for years
to centuries, disturbance-prone forests will eventually lose
stored carbon to the atmosphere, regardless of management
strategies designed to limit or prevent disturbance events.

Third, wildfire confers many important ecological ben-
efits not measurable in carbon units (e.g., nutrient release
and redistribution, stimulation of plant growth, increased
productivity in soil systems from decomposition of burned
material, initiation of vegetation succession and forest
regeneration, increased availability of resources for surviv-
ing trees). Thus, it will be important to develop accounting
methods that can assess ecological benefits in carbon-
equivalent units so that they can be weighed against carbon
losses from disturbance.

Finally, climate changes in combination with other
ecosystem stressors may be sufficient to cause structural
or functional changes in ecosystems and thus alter carbon
dynamics of landscapes. For example, if climate changes
increase wildfire frequency, extent, or severity in forested
ecosystems, forests will likely lose carbon to the atmosphere
that will not be rapidly replaced by new growth. This will
cause forests to act as carbon sources for a period of time
until disturbance regimes and biomass stabilize. Future
landscapes could have the potential to store less, or more,
carbon than under current climate and disturbance regimes.

Potential Future Wildfire Regimes and
Wildfire Occurrence

Potential climate-driven changes to regional fire regimes
in the mid-to-late 215t century include longer fire seasons
and increases in fire frequency, annual area burned, number
of high fire danger days, and fire severity as compared with
modern fire patterns (Bachelet et al. 2003; Brown et al.
2004; Dillon et al. 2011; Krawchuk et al. 2009; Rocca et
al. 2014; Westerling et al. 2006) (figs. 8.4, 8.5). In particu-
lar, lengthening of the fire season (the period of the year
when fires can burn) will allow for more ignitions, greater
likelihood of fire spread, and a longer burning duration. A
longer burning window combined with regionally dry fuels
will promote larger fires and increased annual area burned
relative to modern recorded fire activity. Earlier onset of
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No Suppression

Figure 8.4—Changes in mean
annual area burned (acres) for
current levels of fire suppression
and no fire suppression, A1B
(moderate) and A2 (high)
emission scenarios, and for the
time periods 2030-2050 and
2080-2100, as projected by the
MC2 dynamic global vegetation
model.
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snowmelt will reduce fuel moisture during fire season, mak-
ing a larger portion of the landscape flammable for longer
periods of time (McKenzie et al. 2004; Miller et al. 2011).
This shift may be especially pronounced in mid- to high-
elevation forested systems where fuels are abundant.

Earlier snowmelt, higher summer temperatures, longer
fire season, and expanded vulnerable area of high elevation
forests have produced observed increased wildfire activ-
ity compared to the mid-20™ century, particularly in the
Northern Rockies region (Westerling et al. 2006). Annual
area burned by Western wildfires in the 20 century was
greater in years with low precipitation, high drought sever-
ity, and high temperatures (Littell et al. 2009). Wildfire
activity in the western United States is expected to increase
if climates become warmer and drier in the future. Among
western U.S. forests, mid-elevation forests of the Northern
Rockies are projected to have a high risk of climate-induced
increase in fire (Westerling et al. 2006), and increases in the
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area burned by fire are likely in lower and middle elevations
of mountainous areas (Littell et al. 2009). However, in areas
that are fuel limited, fires may become more infrequent
where there is insufficient moisture for fine fuel accumula-
tion (Littell et al. 2009).

The potential effects of climate change on wildfire area
have been assessed by using statistical and ecological pro-
cess models for the western United States (McKenzie et al.
2004; Spracklen et al. 2009), Pacific Northwest (Littell et al.
2010), Northern Rockies (Holsinger et al. 2014; Loehman et
al. 2011a,b; Rocca et al. 2014), and the Greater Yellowstone
Area (Westerling et al. 2011). For a mean temperature
increase of 4 °F, the annual area burned by wildfires is
expected to increase by a factor of 1.4 to 5 for most western
States (McKenzie et al. 2004), ultimately leading to greater
damage, growth reductions, and mortality in forest ecosys-
tems. The effects of future climate on fire severity (i.c., the
proportion of overstory mortality) are less certain because
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Figure 8.5—Severe fire potential
(probability) for 90th percentile
fire weather scenario, with
non-burnable areas added in
from the LANDFIRE 2008 Fire
Behavior Fuel Model layer (data
source: Dillon et al. 2011).
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severity may be more sensitive than area burned to arrange-
ment and availability of fuels. The risk posed by future fire
activity in a changing climate can be assessed by its likely
effects on human and ecological systems. At the wildland-
urban interface, higher population and forest density have
created forest conditions that are likely to experience more
area burned and possibly higher fire severity than in the
historical record (Dillon et al. 2011) (figs. 8.4, 8.5).
Although fire size in historical sagebrush landscapes
is poorly understood, it is generally accepted that recent
large fires have been fueled by woodland encroachment and
higher fine fuel loads from weed invasions (e.g., cheatgrass).
These changes in fire regime and vegetation-fuel structure
affect large areas in the semiarid western United States and
cascade through all trophic levels. Effects are particularly
harmful on landscapes where postfire recovery is slow.
The trend for larger, more damaging fires in sagebrush
ecosystems is expected to continue until aberrations in fuel
conditions that drive fire are corrected (Keane et al. 2008).

Interactions with Other
Disturbance Processes

Wildland fires and insect outbreaks are the two primary
natural disturbance processes in conifer forests of western
North America (Hicke et al. 2012; Jenkins et al. 2012). The
interaction of wildland fire and bark beetles has been studied
since the early 20t century (Evenden and Gibson 1940;
Miller and Patterson 1927; Weaver 1943), with research
primarily focused on the potential for increased fire hazard
following outbreaks. Multiple studies have cited changes
in fire behavior, extent, and severity resulting from bark
beetle-caused mortality in pine forests (see Hicke et al. 2012
for a summary). Drought and increased temperatures are
key drivers of both wildland fires and bark beetle outbreaks.
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Climate change may be a causal factor in recent increases

in annual area burned by wildfires (Littell et al. 2009) and
area affected by bark beetle outbreaks (Bentz et al. 2010).
Projections of warmer temperatures and increased drought
stress suggest that the total area susceptible to or affected by
beetle outbreaks and large or severe fires may increase in the
coming decades (Williams et al. 2013). Acting independently
or synchronously in space and time, wildland fires and bark
beetle outbreaks can substantially influence forest structure,
composition, and function; abruptly reorganize landscapes;
and alter biogeochemical processes such as carbon cycling,
water supply, and nutrient cycles (Edburg et al. 2012; Falk
2013; Fettig et al. 2013; Hansen 2014; Kurz et al. 2008a).

Unknowns and Uncertainties

Projections of future climate are somewhat uncertain
because the ultimate magnitude of climate change and the
severity of its impacts depend strongly on the actions that
human societies take to respond to these risks (National
Research Council 2010). Global climate models and their
downscaled products may not accurately represent climate
and weather at the regional and local scales that influence
fire occurrence and behavior. For example, although as-
sociations between fire and quasi-periodic patterns such as
ENSO and PDO have been identified, there is incomplete
understanding of how these will respond to climate warming
(McKenzie et al. 2004). In addition, precipitation trends are
highly variable, and projections of future precipitation reflect
both uncertainty and high variation (Intergovernmental
Panel on Climate Change [I[PCC] 2007, 2012; Littell et al.
2011). Lightning, an important ignition source for wild-
land fires, may increase in the future, thus increasing the
potential for fire activity. For example, recent projections
suggest that lightning strikes in the continental United States
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may increase by about 50 percent over the 20t century as
the result of global warming-induced increase in updraft
speeds and atmospheric water content (Romps et al. 2014).
However, others have concluded that confidence in projec-
tions of increased thunderstorms and severe local weather
events is low (Seneviratne et al. 2012).

Thus, the influence of climate changes on future fire pat-
terns is not precisely known. Long-term changes in climate
are unlikely to produce simple linear responses in global fire
regimes (e.g., warmer temperatures do not always lead to
increased fire frequency) because fire activity is influenced
by precipitation, which is not projected accurately by climate
models (Grissino-Mayer and Swetnam (2000). Other re-
search suggests that increases in burned area can be expected
in a warming climate, but fire activity will ultimately be lim-
ited by the availability of fuels (Brown et al. 2004; Flannigan
et al. 2006; Loehman et al. 2011a; McKenzie et al. 2004;
Torn and Fried 1992). In addition, climate drivers interact
with legacies of human land use and local vegetation and
fuel conditions at large spatial scales, making linear climate-
fire predictions difficult. Specifically, decades-long fire
exclusion and timber harvesting in some forests of the west-
ern United States have resulted in densely stocked stands and
heavy down woody fuels accumulation that have probably
contributed to the anomalous size and intensity of recent fires
(Grissino-Mayer and Swetnam 2000; Naficy et al. 2010).

Bark Beetles

Overview

Bark beetles (Coleoptera: Curculionidae, Scolytinae) make
up a large subfamily of insects, although less than 1 percent
of the more than 6,000 species found worldwide cause sig-
nificant economic impacts. In the Northern Rockies region,
bark beetles of economic concern feed in the phloem of living
conifers and can have extreme population amplifications over
short time periods, the hallmark of outbreak species. Larval
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feeding, in addition to colonization by beetle-introduced
fungi, typically results in death of the tree, and new host
material is therefore required for each beetle generation.
Historically, pulses of bark beetle-caused tree mortality have
been extensive across the northern portion of the Rocky
Mountain region. Between 1999 and 2013, bark beetle-caused
tree mortality had substantial impacts in the Northern Rockies
across an average of 1.4 million acres each year (fig. 8.6).
Mountain pine beetle (Dendroctonus ponderosae, hereafter
referred to as MPB) caused the majority of tree mortality (82
percent of acres with mortality detected) with a cumulative
impact across 8.7 million acres during this time period (fig.
8.7). Across western North America between 1997 and 2010,
bark beetle-caused tree mortality resulted in a transfer of
carbon that exceeded that of fire-caused tree mortality (Hicke
etal. 2013).

Both bark beetle populations and their host trees are being
influenced by a warmer climate. Many bark beetle life history
traits that affect population success are temperature-depen-
dent (Bentz and Jonsson 2015), and warming temperatures
associated with climate change have directly influenced bark
beetle-caused tree mortality in some areas of western North
America (Safranyik et al. 2010; Weed et al. 2015b). Warming
climate will also influence host tree distribution across the
Northern Rockies region, and tree vigor, which affects sus-
ceptibility to bark beetle attack (Chapman et al. 2012; Hart et
al. 2013).

Bark Beetles in the Northern Rockies

Bark beetles are relative specialists, feeding on a single
tree species or several species within a single genus. In the
Northern Rockies region, multiple tree species are affected by
different bark beetle species (table 8.3). Populations of sev-
eral beetle species, and MPB in particular, began building in
1999, with high populations continuing in some areas through
2013 (USDA FS n.d.) (figs. 8.6, 8.7). Trend analysis indicates
that most subwatersheds have declining populations, although
some specific locations had increases in 2012 and 2013

m Al Diher Bark Beetles
m Moontain Pine Beetle

1900 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 213
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Table 8.3—Bark beetle species that cause economic impacts in the Northern Rockies.

Bark beetle species

Common name Scientific name

Host tree species

Western pine beetle Dendroctonus brevicomis

Mountain pine beetle D. ponderosae

Douglas-fir beetle D. pseudotsugae

Spruce beetle D. rufipennis

Ips spp.

Scolytus ventralis

Pine engraver beetle

Fir engraver

Ponderosa pine

Limber pine, lodgepole pine, ponderosa pine,
western white pine, whitebark pine

Douglas-fir
Engelmann spruce
Lodgepole pine, ponderosa pine, western white pine

Grand fir

(Egan 2014; Egan et al. 2013). Based on 2012 vegetation
characteristics, susceptibility of Northern Rockies watersheds
to future MPB outbreaks is spatially variable with many areas
projected to lose more than 25 percent of total basal area
(Krist et al. 2014).

Drivers of Bark Beetle Outbreaks

Bark beetle population outbreaks require forests with ex-
tensive host trees of suitable size and age (Fettig et al. 2013).
For most irruptive species, preferred hosts are large, mature
trees that provide a large amount of phloem resource for a
developing brood. Large landscapes of these mature stands
provide ideal conditions for years of bark beetle population
growth.

Although suitable host trees are critical to outbreak devel-
opment, beetle populations can exist for years at low levels
until release is triggered by inciting factors. These triggers
allow for rapid population growth that utilizes plentiful host
trees. Triggers have been difficult to quantify but include fac-
tors that make food more readily available and that increase
survival and reproduction of the beetles. Stand conditions
(Fettig et al. 2013), drought (Chapman et al. 2012; Hart et al.
2013), and pathogens (Goheen and Hansen 1993) can make
it easier for low levels of beetles to overwhelm and kill trees.
Similarly, large areas of host trees recently killed by fire,
wind, or avalanche provide pulses of accessible food, and
have resulted in outbreaks of some species such as Douglas-
fir beetle (Dendroctonus pseudotsugae) and spruce beetle
(D. rufipennis) (Hebertson and Jenkins 2007; Shore et al.
1999), as well as secondary beetles including Ips species and
fir engraver (Scolytus ventralis) (Livingston 1979). Weather
favorable to beetle reproduction and survival also influences
population fluctuations, and can both initiate and sustain out-
breaks (Bentz et al. 2011; Powell and Bentz 2009; Régnicre
and Bentz 2007).

Given a susceptible forest, climate and weather directly
drive bark beetle outbreaks by affecting beetle growth and
survival through temperature-dependent life history traits. For
example, the process of mass attack needed to successfully
overcome tree defenses requires synchronous emergence
of adults, a process mediated by temperature (Bentz et al.

USDA Forest Service RMRS-GTR-374. 2018

1991). Diapause and development rate thresholds help in

this synchrony (Bentz and Jonsson 2015; Hansen et al. 2001,
2011; Ryan 1959; Safranyik et al. 1990). These strategies also
reduce the likelihood that life stages most sensitive to cold
(eggs and pupae) are not present during winter. Development
rates and thresholds also dictate life cycle timing, an impor-
tant determinant of the number of generations per year.

The western pine beetle (D. brevicomis) and Ips species
can be bivoltine (two generations in one year) in the Northern
Rockies (Kegley et al. 1997; Livingston 1991), although
multivoltine in more southern parts of their range. Other bark
beetle species need at least 1 year to complete a generation
(univoltine), and at higher elevations, where temperatures are
cooler, 2 to 3 years may be required for a complete life cycle.
Warm temperatures in the summer and spring extend the time
that temperatures are above development thresholds, thereby
allowing a reduction in generation time (Bentz et al. 2014;
Hansen et al. 2001). Shorter generation times can lead to
increased population growth, causing increased tree mortality.
Winter temperature also influences bark beetle population
success. Larvae cold-harden to survive subfreezing tempera-
tures (Bentz and Mullins 1999; Miller and Werner 1987),
although extreme fluctuations in temperature in spring and
fall, in addition to long durations of temperatures below —31
°F, can cause extensive larval mortality (Evenden and Gibson
1940; Régniére and Bentz 2007; Safranyik and Linton 1991).

Bark Beetle Outbreaks Shape
Landscape Patterns

Bark beetle disturbances play a significant role in suc-
cessional pathways and biogeochemical cycles in Northern
Rockies forests (DeRose and Long 2007; Edburg et al. 2012;
Hansen 2014). At low population levels, bark beetles act locally
as thinning agents, producing forest gaps that promote regen-
eration and the release and subsequent growth of neighboring
host and nonhost trees, often producing uneven-aged stands
(Mitchell and Preisler 1998). At outbreak population levels,
tree mortality can approach 80 percent across landscapes of
homogeneous host species and age, changing age-class distri-
butions and overstory and understory species compositions.
For example, in seral lodgepole pine forests, removal of the
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largest trees by MPB can hasten succession by climax species
when fire is absent (Hagle et al. 2000; Roe and Amman 1970).
Bark beetle disturbance can have long-term effects on forest
structure and composition (Pelz and Smith 2012), and future
landscape patterns in some forest types will be driven by tree
mortality caused by large outbreaks of beetles.

Potential Future Bark Beetle Regimes
and Occurrence

Climate change will have indirect and direct effects on
bark beetle population outbreaks (table 8.4). Indirectly,
changing temperature and precipitation regimes will influ-
ence the suitability and spatial distribution of host trees.
Community associates important to bark beetle population
success, including fungi, predators, and competitors, will also
be affected by changing climate and thereby indirectly affect
beetle population outbreaks. Direct effects will also occur
as changing temperature regimes either promote or disrupt
bark beetle temperature-dependent life history strategies
that evolved through local adaptation for increased beetle
population fitness and survival. Future bark beetle-caused
tree mortality will therefore depend not only on the spatial
distribution of live host trees and heterogeneity of future
landscapes (see Chapter 6), but also on the ability of beetle
populations and their associates to adapt to changing condi-
tions when existing phenotypic plasticity is surpassed.

Projected changes in temperature and precipitation, in
addition to a potential increase in extreme events such as
windstorms, will significantly influence the spatial and
temporal distribution of suitable host trees across future
landscapes. For example, host tree defenses can be weakened
by reduced water availability (Chapman et al. 2012; Gaylord
et al. 2013; Hart et al. 2013). Increasing temperature is also
associated with changing hydrologic regimes (see Chapter 4),
including altered interseasonal timing of soil water availabil-
ity facilitated by snowpacks that have progressively melted
earlier in recent decades, and changes in the distribution

Table 8.4—Risk assessment for mountain pine beetle outbreaks.?
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of precipitation falling as rain versus snow (Regonda et al.
2005). These factors, along with other potential climate
changes, may exacerbate physiological drought stress in host
trees, which could indirectly benefit bark beetles that colonize
stressed hosts in the late spring or summer (Raffa et al. 2008).
Similarly, increased wind events could provide a reservoir of
stressed trees used by some bark beetle species to surpass the
endemic-epidemic threshold. Species currently considered
secondary (i.e., those that infest stressed trees) could become
primary tree killers as their favored habitat increases.

Warming temperatures will also directly influence bark
beetle population success, although the effects will depend on
the beetle species, as well as the seasonal timing, amount, and
variability of thermal input. For example, across MPB habi-
tats in the western United States from 1960 to 2011, minimum
temperatures increased 6.5 °F. This increase in minimum
temperature resulted in an increase in MPB survival and
subsequent beetle-caused tree mortality in many areas of the
Northern Rockies (Weed et al. 2015a). As climate continues
to change, however, extreme within-year variability in winter
warming could be detrimental to insect survival. Bark beetles
produce supercooling compounds as temperatures decrease
and catabolize compounds as temperatures warm. Large
temperature fluctuations could result in excessive metabolic
investment in maintaining appropriate levels of antifreeze
compounds, leaving individuals with minimal energy stores
at the end of winter. In addition, many species overwinter at
the base of tree boles, gaining protection from predators and
excessive cold temperatures when insulated beneath snow.
Reduced snow levels in a warming climate could therefore
add to increased overwinter mortality.

Warming at other times of the year could similarly have
both positive and negative effects on bark beetle populations.
Phenological flexibility allows some species to shift voltinism
pathways, developing on a semivoltine (one generation
every 2 years) life cycle in cool years, and a univoltine life
cycle in warm years (Bentz et al. 2014; Hansen et al. 2001).
Warming temperatures could also cause species that are

Likelihood of

Elevation Direction of change ~ Main driver(s) of change Projected duration of change change
<3,300 ft Increase if host trees  Temperature—caused shift to Increasing risk through 2100 High
available bivoltinismP
3,300-6600 ft Decrease Temperature-caused disruption of Decreasing risk through 2100 High
seasonality
6,600-10,000 ft Increase initially, then Initially temperature-caused shift ~Decreasing risk through 2100 High
decrease from semivoltine€ to unvioltined,
then disruption of seasonality
>10,000 ft Increase Temperature-caused shift from Increasing risk through 2100 High

semivoltine to univoltine

2 Developed using model simulations and expert opinion and information from literature as summarized in this chapter.

b Two generations in one year.
€ One generation in two years.
d One generation in one year.
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currently bivoltine (e.g., western pine beetle, Ips species) to
become multivoltine. These types of voltinism shifts can lead
to rapid increases in beetle populations and subsequent tree
mortality. Some thermal regimes allow these life cycle shifts
yet maintain seasonal flights. However, other thermal regimes
that result in voltinism shifts could also disrupt seasonality.
For example, warm summers could accelerate develop-
ment, resulting in reduced generation time, but could also
result in cold-sensitive life stages entering winter. Existing
developmental thresholds and diapause strategies that serve
synchrony currently reduce the likelihood of this happening.
As existing phenotypic plasticity is surpassed, rapid warming
without adaptation could lead to lower overall population
fitness in some areas as a result of poor seasonal timing
(Régnicre et al. 2015).

Expected Effects of Climate Change

Although many bark beetle species in the Northern Rockies
region can cause economic impact, the influence of climate
change on population outbreaks has been most studied in MPB.
It is clear that multiple aspects of climate change can positively
influence MPB, including increasing winter temperature
(Régniere and Bentz 2007; Weed et al. 2015b) and reduced pre-
cipitation (Chapman et al. 2012). But changing thermal regimes
can have both positive and negative effects on MPB popula-
tion growth through phenological synchrony and generation

EFFECTS OF CLIMATE CHANGE ON ECOLOGICAL DISTURBANCE IN THE NORTHERN ROCKIES REGION

timing. Acknowledging potential other climate effects, here we
describe expected direct effects of climate change using a tem-
perature-dependent mechanistic demographic model of MPB
population growth that is based on phenological synchrony
(Powell and Bentz 2009). The effect of future temperatures on
univoltine population growth rate relative to historical condi-
tions is projected. Although current climates apparently prevent
MPB from successfully completing two generations in a single
year (Bentz and Powell 2015; Bentz et al. 2014), we also evalu-
ated if future thermal regimes would promote bivoltinism. The
model was driven with downscaled temperatures from two
global climate models (GCMs: CanEMS2, CCSM4) and two
emissions scenarios (Representative Concentration Pathways
RCP 4.5 and RCP 8.5) based on the multivariate adaptive con-
structed analogs approach (University of Idaho n.d.). Although
indirect effects of climate clearly affect host tree vigor, stand
composition, and distribution across a landscape, these effects
are currently not included in our demographic model. We
report our model results, however, in conjunction with hazard
categories developed by Krist et al. (2014) based on stand
conditions conducive to MPB population growth (table 8.5).
Model output was considered only for locations where pines
currently grow. Model projections are presented in figures 8.8
and 8.9, and tables 8.4 and 8.5, and are summarized next.

See Bentz et al. (2016) for spatial displays (for the CanEMS2
GCM).

Table 8.5—Pine and mountain pine beetle (MPB) metrics by elevation category. Pine forests <6,600 ft have relatively low current
hazard for MPB and low univoltine growth potential, although bivoltine potential is moderate. Pine forests >6,600 ft have
relatively high current stand hazard conditions for MPB and relatively high univoltine growth potential, although bivoltine

potential is zero.

<3,300 ft 3,300-6,600 ft  6,600-10,000 ft  >10,000 ft
Curreqt sta;d density pine (trees per acre [standard 46.4 (58.7) 142 (206) 471 (434) 223 (223)
deviation])
Proportion of area (percent) P rated as:
Low hazard 97 69 30 18
Moderate hazard 2 13 14 13
High hazard 1 18 56 68
MPB potential for population success (2015-2025),
based on simulation with CanEMS2 GCM, emission
scenario RCP-45
Univoltine population growth rate (R) 0.00 0.44 1.62 0.65
Bivoltine (percent of points within elevation
category projected to have a thermal regime
! A 24 5 0 0
supporting bivoltinism for >50 percent of years
between 2015 and 2025)
MPB potential for population success (2015-2025),
based on simulation with CanEMS2 GCM, emission
scenario RCP-85
Univoltine population growth rate (R) 0.04 0.86 2.0 1.05
Bivoltine (as above) 35 7 0 0

a From Blackard et al. (2009).

b Current MPB hazard based on host stand conditions (from Krist et al. 2014).
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The proportion of areas with thermal requirements for
MPB bivoltinism has historically been low in the Northern
Rockies region (figs. 8.8, 8.9). Stands at elevations less
than 3,300 feet currently have relatively few pines and low
hazard to MPB, and population growth of univoltine popula-
tions was historically very low. This is most likely because
it was too warm, and adult emergence synchrony was
disrupted. Growth rate is projected to decrease further in
current (2000-2009) and future climates relative to histori-
cal periods (fig. 8.8). However, the proportion of simulation
points at less than 3,300 feet with thermal regimes that
allow for bivoltinism is projected to increase through 2100,
particularly when the RCP 8.5 scenario temperature projec-
tions are used (fig. 8.8). The availability of pines at less than
3,300 feet in future climates may be restricted.

* Pine stands at 3,300 to 6,600 feet were also projected
to have lower univoltine population growth rates
in current and future climates than historically, and
some small proportion of stands will have increasing
probability of bivoltinism (fig. 8.8).

* The highest density of pine currently occurs at 6,600
to 10,000 feet, the elevation range also associated
with most (56 percent) of the high-hazard stands
(table 8.5). These stands are predicted to have higher
univoltine population growth rates than historically,
through 2030-2050. Thermal regimes for bivoltinism
are unlikely at this elevation (fig. 8.8).

* Population growth rates were historically very low in
stands above 10,000 feet until 2000-2009; rates are
projected to increase through 2100 (fig. 8.8). These
stands historically were too cool for bivoltinism and
are projected to remain too cool in future climates.

» Pine forests below 6,600 feet currently have low stand
hazard for MPB and low univoltine growth potential
in the near future (2015-2025), although bivoltine
potential is moderate. Pine forests above 6,600 feet
have high current stand hazard for MPB and high
univoltine growth potential between 2015 and 2025,
although bivoltine potential is zero. Pine stands above
6,600 feet, particularly between 6,600 and 10,000 feet,
have the highest risk of MPB-caused tree mortality in
the near future.

* The Grassland subregion contains a small amount
of “Great Plains ponderosa pine,” and historically
temperatures were too warm for univoltine MPB
population success (fig. 8.9). A high proportion
of locations in these areas is projected to become
thermally suitable for bivoltinism (fig. 8.9), although
pine occurrence in future climates may be limited.

¢ In the Western Rockies, Central Rockies, and Eastern
Rockies subregions, univoltine population growth
is projected to decrease beginning in the 20002009
period, although a small proportion of locations at the
lowest elevations will become thermally suitable for
bivoltinism by 2080-2100.
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* In the Greater Yellowstone Area subregion, univoltine
population growth remains relatively high until
the 20802100 time period (fig. 8.9) with a small
proportion of locations at the lowest elevations with
the potential to become bivoltine at that time (fig. 8.9).

Interactions with Other Disturbance
Processes

Bark beetle-caused tree mortality is influenced by and
can influence fire, although the relationships are complex
and dynamic (Hicke et al. 2012; Jenkins et al. 2014). In fact,
any disturbance that influences the distribution and vigor of
host trees will influence bark beetle outbreaks. Moreover,
the pattern of bark beetle-killed trees across a landscape
will have cascading effects on a myriad of abiotic and
biotic processes such as fire, wildlife habitat, and vegeta-
tion succession and dynamics (Saab et al. 2014). During
non-outbreak years, many bark beetle species survive in
trees infected with root diseases. The amount of root disease
in trees stressed by climate change may increase, which in
turn can result in higher populations of bark beetles causing
increased tree mortality (see Root Disease section).

Unknowns and Uncertainties

It is important to acknowledge sources of uncertainty
in models that describe relationships among climate,
bark beetle populations, and their host trees, in addi-
tion to uncertainties with projections of future climate.
Mechanistic-based phenology models are good tools for
projecting beetle population response in a changing climate
(Bentz and Jonsson 2015). This type of model incorporates
the important role of seasonality and allows for emergent
population processes when driven by climate change
projections. However, data are lacking on temperature-
dependent relationships of most bark beetle species in the
Northern Rockies, hindering development of conceptual
and empirical models. Moreover, one of the greatest sources
of uncertainty is the lack of understanding of potential
adaptations in bark beetle developmental traits to a rapidly
changing climate. With few exceptions (Addison et al. 2013,
2014), little is also known about climatic effects on the wide
array of bark beetle community associates including fungi,
bacteria, parasites, and predators.

Host trees will also respond to climate change, and
responses will have cascading effects on bark beetle popu-
lations. Further investigation, especially in water-limited
systems, is needed to increase quantitative understanding
of how climate-induced changes in trees influence bark
beetle population success at different spatial scales. Due
to this limited understanding, predictive models that in-
corporate the integrated effects of climate and bark beetle
disturbances on vegetation pathways are lacking, con-
straining our ability to make projections for future forests
(Anderegg et al. 2015).
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Figure 8.8—Left panel: projected mountain pine beetle (MPB) population growth rate (mean, standard deviation) of univoltine
populations (one generation per year) over decades (historical) and 20-year periods (projected) from 1950 to 2100. Shown
are the mean and standard deviation among locations of decadal (historic) and 2-decadal (projected) growth rates. Right
panel: proportion of simulation points in which bivoltinism (two generations in one year) is projected for more than 50
percent of years in each time period. Projections are based on a temperature-dependent model of MPB development and
population growth (Powell and Bentz 2009) using temperatures from the CanESM2 and CCSM4 GCMs and two emission
scenarios (Representative Concentration Pathways [RCP] 4.5 and 8.5). Model output is shown by elevation category (in feet).
Simulation points are geographic locations of downscaled temperatures where pines occur (sample size = 17,616).
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Figure 8.9—Left panel: Projected mountain pine beetle (MPB) population growth rate (mean, standard deviation) of univoltine
populations (one generation per year) over decades (historical) and 20 year periods (projected) from 1950 to 2100. Shown are
the mean and standard deviation among locations of decadal (historic) and 2-decadal (projected) growth rates. Right panel:
proportion of simulation points where bivoltinism (i.e., two generations in one year) is projected for more than 50 percent of
years in each time period. Predictions are based on a temperature-dependent model of MPB development and population
growth (Powell and Bentz 2009) using temperatures from the CanESM2 and CCSM4 GCMs and two emission scenarios (RCP
4.5, RCP 8.5). Model output is shown by Northern Rockies Adaptation Partners (NRAP) subregion. Simulation points are
geographic locations of downscaled temperatures where pines occur (sample size = 17,616).
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White Pine Blister Rust

Overview

White pine blister rust (Cronartium ribicola, hereafter
referred to as WPBR) is a nonnative fungus that was inad-
vertently introduced to western North America from Europe
around 1910 (Bingham 1983; Tomback and Achuff 2011).
The WPBR fungus infects only five-needle pine species, and
all nine North American white pine species are susceptible.
Three white pines occur in the Northern Region: western
white pine (Pinus monticola), whitebark pine (Pinus albicau-
lis), and limber pine (Pinus flexilis). WPBR has been found
across most of the ranges of these three pines in the Northern
Region, and it has caused greater than 90-percent mortality
in western white pine. WPBR presence in whitebark and lim-
ber pine is variable, but highest in the warmer, moister parts
of their ranges (Tomback and Achuff 2010).

The life cycle of WPBR requires two hosts, with two
spore-producing stages on white pine and three separate
spore-producing stages on three potential alternate hosts:
Ribes, Pedicularis, and Castilleja species. Pine infection
begins when basidiospores produced on Ribes leaves in late
summer are wind dispersed to nearby pines. The basidio-
spores germinate on pine needles and fungal hyphae grow
through the stomata into the cell tissues, needles, and stem
(Patton and Johnson 1970).

Cankers form on white pine branches and main stems
as the phloem is first invaded by hyphae and then becomes
disrupted by blister-like structures that are filled with
powdery yellow aeciospores (Hudgins et al. 2005). As tree
branches and stems are girdled, branches and tops die back
to the canker. Continued downward growth of the persistent
cankers and poor competitive ability then kill infected trees.
Depending on where the canker occurs, cone production
often decreases or is prevented well before tree death.

The released aeciospores infect Ribes and the other alter-
nate host species (Schwandt et al. 2013). This can occur at
long distances from infected pines, as aeciospores are hardy
and can disperse as much as 60 miles (Frank et al. 2008). At
most locations and for most alternate hosts, infected leaves
produce urediniospores that spread only short distances

Table 8.6—Risk assessment for white pine blister rust.2
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from leaf to leaf or plant to plant (Newcomb 2003). These
recurrent infections keep rust alive through the growing
season until conditions are suitable for pine infection. For
most alternate hosts, leaf infections produce hair-like struc-
tures (teliospores) that produce basidiospores in fall or when
night temperatures are cool; other hosts with less vigorous
leaf infections may produce teliospores directly. Locations
where synergistic pairs of alternate hosts occur—one that
readily spreads urediniospores, and one that produces pine-
infecting basidiospores—are especially favorable for pine
infection (Zambino 2010).

Basidiospores have a narrow weather window for
production, dispersal, and successful infection of pine
needles: they infect best in periods of high humidity (>98
percent) with moderate temperatures (between 60 and 68
°F) (Bega 1960). Conditions for infection are determined by
temperature, with a 48-hour optimum for infection at 64 °F,
though up to 5 days may be required at 39 °F (McDonald et
al. 1981). Temperatures exceeding 77 °F are lethal for telio-
spores. Basidiospores are short-lived and most often cause
infections within a few feet of Ribes plants, but they can be
carried long distances or upslope on moist air masses, lofted
in thermals over bodies of water, or carried downslope on
cold air currents to infect trees at the interfaces with tem-
perature inversions (Van Arsdel et al. 2005; Zambino 2010).

The time required for WPBR to kill its host varies by
species, distance of infection from bole (Schwandt et al.
2013), and bole circumference. Typically WPBR Kkills
western white pine in 5 to 10 years, and whitebark pines
(P, albicaulis) after 20 years (Hoff and Hagle 1990). WPBR-
caused tree mortality greatly affects stand structure and
species composition, but the most serious impact of WPBR
is the long-term impact on white pine regeneration capac-
ity, with direct mortality of rust-susceptible seedlings and
saplings and the loss of cone and seed production following
branch dieback and top kill. Native pine populations show
some heritable resistance to WPBR, but the frequency of
resistance is low and variable (Zambino and McDonald
2004). Studies in the 1970s of natural stands that originated
in the late 1920s estimated that fewer than 1 in 10,000 trees
lacked cankers (were rust-resistant) (Hoff et al. 1980). But
resistance may have increased in the 35 years since this

Direction of Predicted duration Likelihood of
change Main driver(s) of change of change change
Infection frequency Little to moderate  Possibility of increased Until a sufficient Low
and severity Increase wave years in high elevation proportion of the
ecosystems landscape has
populations of rust-
resistant pine trees,
there will always
be high infections
regardless of climate
@ Developed using expert opinion and information from literature as summarized in this chapter.
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report, as a result of additional rounds of regeneration under
natural selection (Klopfenstein et al. 2009; McDonald et al.
2004, 2005; Zambino and McDonald 2005).

Effects of Climate Change on White
Pine Blister Rust

Climate changes may cause WPBR infections to
occur earlier and with greater incidence in pine stands
(table 8.6). Specific weather conditions required for ba-
sidiospore germination and infection of pine needles may
occur more frequently and for longer periods in the future
(Koteen 1999). “Wave” years are projected to increase in
the future for whitebark pine (Keane et al. in press); these
years have hot and humid weather conditions throughout
most of the growing season that facilitate infections on
pine and alternate hosts, followed by moist but cooler
weather events for teliospore and basidiospore production
and pine infection. For most temperate pine forests (west-
ern white and limber pine), however, Sturrock et al. (2011)
speculate that wave years will actually decrease because
of hotter, drier projected climates. Further, Helfer (2014)
suggests that warmer temperatures could negatively affect
rusts and that higher concentrations of atmospheric carbon
dioxide (CO,) could cause declines in rust populations. He
also states that the highly variable and extreme weather
projected in the future will aid in WPBR spore dispersal,
resulting in expansion of its range and higher spore loads
on existing pines.

The highly variable and novel climatic conditions
projected in the future may serve to accelerate mutations
of WPBR to create populations that may overcome the na-
tive rust resistance in five-needle pines (Simberloff 2000).
Alternatively, changing climates may lead to suitable
climates for WPBR variants that are in locations other than
North America. Most rust infection and mortality occur
regardless of tree condition and vigor, so it is doubtful
that any direct responses of the tree or the Ribes hosts to
future climates, such as increased growth, will enhance
or degrade the ability of the host to ward off infections.
However, climate-mediated changes in host regeneration
dynamics could restrict or expand host ranges (Helfer
2014). As a result, this could alter WPBR range. Some
predict higher leaf biomass for the two host species with
warmer, enriched CO, environments, and more leaves
could provide additional germination surfaces and a higher
chance for rust infection on both hosts.

Distribution and frequency of synergistic alternate host
species combinations (Zambino 2010) could also change.
In higher elevation areas, new climates (i.e., warming
temperatures along with high precipitation) may facilitate
the expansion of Ribes into areas that were historically
too cold and snowy to support certain hosts. On the other
hand, in low-elevation upland areas where Ribes is cur-
rently abundant, drought may cause decline of the host.
Moreover, drought may cause extended and extensive

stomatal closure in the pines, thus preventing hyphae entry.
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The shifting of mosaics of the Ribes host populations into
new higher elevation areas, driven by drought in lower
elevations, may spread WPBR into areas where it has not
yet occurred.

Interactions with Other Disturbance
Processes

The interaction of fungal pathogens and their hosts with
other disturbances may be a key factor in future WPBR
infections (Ayres and Lombardero 2000). The interac-
tive effects of wildland fire on WPBR are probably most
important, but they are mostly minor and primarily indirect
under future climates. The exception is the possibility that
smoke may kill rust spores produced at the time of the fire
(Hoffman et al. 2013).

White Pine Blister Rust and Wildland Fire

Fire indirectly affects WPBR by changing the size,
distribution, and abundance of its hosts. Most five-needle
pines of the western United States are somewhat fire-
adapted with thick bark, high canopies, and deep roots
(Ryan and Reinhardt 1988). Mixed- and high-severity fires
are currently common in most forests where WPBR is
present (Arno et al. 2000; Murray 2007) and are projected
to increase in size, frequency, and intensity (Westerling
et al. 2011). Increases in fires and burned areas can create
favorable conditions for pine regeneration because most
five-needle pine seeds are dispersed by rodents and birds
and are thus better adapted to spread into postfire land-
scapes than seeds of their tree competitors (Lanner 1989;
Morgan et al. 1994). Ribes populations may increase after
fire through regeneration by seed and sprouting from roots
and rhizomes. Therefore, fire will often favor Ribes regen-
eration over other species not adapted to fire. However,
re-burns soon after an initial fire can eliminate regenerat-
ing Ribes individuals before they can develop a seedbank
for the next forest regeneration cycle (Zambino 2010).

Severe fires that kill rust-resistant pine trees may ensure
continued high rust mortality in the future because it
dampens the rate of rust-resistant adaptations (Keane et al.
2012). However, where rust-resistant five-needle pines sur-
vive fire they can provide the seeds for populating future
landscapes that are resilient to both rust infection and fire
mortality. Fire exclusion generally increases competition
stress (Heward et al. 2013), weakening pine trees. Stress
from competition does not increase rust infection (Parker
et al. 2006), but may facilitate mortality in pines trees
under stress after being girdled by blister rust.

Trees infected with WPBR are weakened, and may
be more susceptible to fire-caused damage and mortality
(Stephens and Finney 2002). Ladder fuels of trees at-
tacked or killed by WPBR may increase crowning owing
to abundant pitch, which can extend from base to rust
bole cankers, and from dead red crowns of girdled trees.
As branches and tops of white pines die back, they add
dead foliage and wood to the fuelbed, which may increase
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fire intensity and fire-caused tree mortality. In contrast,
western white pine needles gradually added to the fuel bed
are more similar to normal needle shed, and are quickly
degraded in moist, productive environments. Mortality
from WPBR often results in the elimination or thinning
of the shade-intolerant pine overstory, allowing shade-
tolerant competitors to occupy the openings. This creates
substantially different canopy fuel conditions, such as
lower canopy base heights, higher canopy bulk densities,
and greater canopy cover, which facilitate more frequent
and intense crown fires (Keane et al. 2002; Reinhardt et
al. 2010). Many shade-tolerant competitors are also more
susceptible to fire damage, resulting in higher postfire tree
mortality in rust-infected landscapes.

White Pine Blister Rust and
Mountain Pine Beetle

Interactions between native MPB populations and
WPBR are rarely studied because they are difficult to
quantify over time. In their endemic phase, MPB popula-
tions may weaken pines and facilitate infection by WPBR,
but these interactions are strongly governed by climate
and biophysical environment (Tomback and Achuff 2011).
However, the ubiquitous presence of WPBR spores and the
resistance to the disease in pine species ensure that most
five-needle pines at many sites will eventually become
infected and die from WPBR, regardless of MPB endemic
levels (Hoff et al. 2001). More importantly, MPB influ-
ences WPBR through regulation of the tree species that
are host to both disturbance agents and killing of host trees
that are resistant to the rust (Campbell and Antos 2000).
For example, although whitebark pine stands in the Greater
Yellowstone Area show little WPBR-related mortality, lev-
els of MPB-related mortality are high (Kendall and Keane
2001; Macfarlane et al. 2013). Many stands of healthy
five-needle pines in Yellowstone have been subjected to
a major MPB outbreak over the last decade as a result of
high densities of large diameter trees coupled with pro-
longed warm, dry conditions. These outbreaks resulted in
substantial mortality of rust-resistant whitebark pine trees
(Logan et al. 2008).

Effects of WPBR on MPB infestations are also highly
variable and subtle. Archibald et al. (2013) found less MPB
activity in trees that had high WPBR damage, whereas
Bockino and Tinker (2012) found that whitebark pine
selected as hosts for MPB had significantly higher WPBR
infection, but this varied by tree size (diameter), stand type,
and disturbance pattern (Larson 2011). Kulhavy et al. (1984)
found that more than 90 percent of western white pine trees
infected by bark beetles had either WPBR or some type of
root disease, whereas Six and Adams (2007) found little
evidence of interaction effects between MPB and WPBR.
Simulations of MPB disturbance under current climate re-
sult in a decline in both lodgepole pine and whitebark pine,
and a corresponding increase in subalpine fir (4bies lasio-
carpa) and Douglas-fir (Pseudotsuga menziesii), with little
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change from the addition of WPBR (fig. 8.10). These trends
are enhanced under a warmer climate, in which lodgepole
pine declines are greater and stands are replaced primarily
by Douglas-fir, but WPBR interaction has only minor effects
on species composition (Keane et al. 2015).

White Pine Blister Rust, Fire,
and Mountain Pine Beetle

Studies of interactions among fire, beetles, and rust are
rare, but we posit that MPB and WPBR serve to reduce
five-needle pine populations and create fuelbeds that may
support wildfires that are more intense than historical
counterparts, potentially resulting in high mortality of the
dominant vegetation. Although fire reduces pine abundance
in the short term, it apparently ensures the long-term
persistence of pine by eliminating competitors (Keane and
Morgan 1994). Modeling studies have shown that decades
to centuries are required to reestablish populations of rust-
resistant white pines after die-off (such as would occur with
MPB), and increased frequency and extent of wildfire under
climate change favored white pine regeneration and per-
sistence over shade-tolerant species in some regions, even
with WPBR infection and losses of some white pine to fire
(Loehman et al. 2011a,b). The largest decline in whitebark
pine has been found in those areas affected by both WPBR
and MPB, but not fire (Campbell and Antos 2000).

Interactions among fire, MPB, and WPBR can occur
only in areas that have the potential to support five-needle
pines, which are rare in many landscapes. However, recent
simulation efforts have found that fire frequency under cur-
rent climate is 10 percent lower when all three disturbances
are allowed to interact, and average tree mortality is also
lower (fig. 8.10). In a warmer climate, fire frequency de-
creases, high-severity fires increase, and interactions among
disturbances create different landscapes than when each dis-
turbance acts separately (or in the absence of disturbance)
(Keane et al. 2015) (fig. 8.11).

Unknowns and Uncertainties

It is difficult to mechanistically simulate WPBR popula-
tion dynamics because the disease is governed by processes
from fine-scale (e.g., microclimate, spore production and
germination, tree size and health) to coarse-scale (e.g., spore
dispersal, wind, alternate host distributions, topographic
controls) processes. Therefore, the representation of WPBR
in most models will tend to be both stochastic and empirical,
and this will tend to reduce the robustness of model predic-
tions and add to the uncertainty of future WPBR predictions.

White pine trees will also directly respond to climate
change, and responses will have interacting effects on
WPBR infection potential. The key to the future abundance
of white pines on the Northern Rocky Mountain landscapes
will hinge on the ability of the three pine species to develop
rust-resistant populations that are resilient to climate change.
This probably will not happen without human intervention.
The rapid pace of predicted climate change coupled with the
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Figure 8.10—Landscape composition of species cover types using the plurality of basal area for current
climate for the East Fork of the Bitterroot River landscape with all combinations of fire, white pine
blister rust (WPBR), and mountain pine beetle (MPB): (a) fire, WPBR, and MPB; (b) no fire, WPBR,
MPB; (c) fire and MPB; (d) MPB only; (e) fire and WPBR; (f) WPBR only; (g) fire only; and (h) no
disturbances. Species: PIAL-whitebark pine, PIEN-Engelmann spruce, ABLA = subalpine fir, PICO-
lodgepole pine, PSME-Douglas-fir, and PIPO-ponderosa pine. Produced using the FireBGCv2
mechanistic ecosystem-fire process model (Keane et al. 2015).

long maturation times of the three pine species may exacer-  disturbance groups that affect ecosystem development and
bate the species decline. It is essential that natural resistance  change, but the overall impacts of forest diseases on vari-
is fostered by land management agencies to ensure that ous resources are difficult to quantify. This is partly due
these valuable species and the forests that they create are not  to our inability to separate predisposing effects of some of
lost forever. the most important diseases, which act over a long term,

from mortality caused by short-term factors such as insect
outbreaks and drought. Forest diseases tend to be more

Forest Diseases cryptic and chronic in their effects, so estimating their oc-
currence and abundance is difficult. Here we rely mostly on
Overview older studies and observations to quantify disease effects in
what were formerly called commercial timberlands. Spatial
Forest diseases are found in all forest ecosystems of distributions of most forest diseases have not changed much,
the Northern Rockies region. They are one of three major although the effects of individual diseases may change due
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Figure 8.11—Landscape composition of species cover types using the plurality of basal area for a warmer
climate (A2 emission scenario) for the East Fork of the Bitterroot River landscape with all combinations
of fire, white pine blister rust (WPBR), and mountain pine beetle (MPB): (a) fire, WPBR, and MPB; (b)
no fire, WPBR, MPB; (c) fire and MPB; (d) MPB only; (e) fire and WPBR; (f) WPBR only; (g) fire only;
and (h) no disturbances. Species: PIAL = whitebark pine, PIEN = Engelmann spruce, ABLA = subalpine
fir, PICO = lodgepole pine, PSME = Douglas-fir, and PIPO = ponderosa pine. Produced using the
FireBGCv2 mechanistic ecosystem-fire process model (Keane et al. 2015).

to effects of climate on disease organisms, hosts, and envi-
ronmental predisposition.

We focus on the major groups of forest diseases in the
Northern Rockies known to have significant effects on eco-
systems and ecosystem services, and for which at least some
information is available on effects of climate.

Dwarf Mistletoe

Dwarf mistletoes (4rceuthobium spp.) are a group of
parasitic seed plants that are widespread across the Northern
Rockies region and primarily cause reduced tree growth
and productivity, but in some cases also cause tree mortal-
ity. Five species of dwarf mistletoe are found in the region,

USDA Forest Service RMRS-GTR-374. 2018

mostly on these primary hosts: 4. americanum on lodgepole
pine, A. campylopodum on ponderosa pine, A. cyanocarpum
on limber pine, 4. douglasii on Douglas-fir, and 4. laricis
on western larch (Larix occidentalis). Mistletoes may occa-
sionally infect trees of other species when they are growing
interspersed with infected primary hosts.

Approximately 28 percent of lodgepole pine forest is
infested by A. americanum. Arceuthobium cyanocarpum
occurs primarily east of the Continental Divide, although
the area affected has not been estimated. Douglas-fir is
infested in more than 13 percent of its range by 4. douglasii.
About 38 percent of the western larch type is infested by A.
laricis. The distribution of 4. campylopodum in the region is
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limited to a portion of Idaho, where it occurs on ponderosa
pine. Drummond (1982) estimated that 2.1 million acres of
national forest lands were infested by the three most impor-
tant species of dwarf mistletoe in the Northern Rockies. An
estimated 31 million cubic feet of wood are destroyed by
these pathogens each year.

Root Disease

Root disease is a major cause of tree growth loss and
mortality in the Northern Rockies region. These diseases are
primarily a problem west of the Continental Divide, but also
affect local areas east of the divide. Various species of fungi
cause root disease; the two most important native pathogens
in the Northern Rockies region are Armillaria species and
Heterobasidion irregulare, which causes annosus root
diseases. These and other root diseases co-occur in many
mesic to moist forests west of the divide. Armillaria root
disease kills conifers of all species when they are young,
but is especially damaging to Douglas-fir, subalpine fir,
and grand fir (4bies grandis) because these species remain
susceptible throughout their lives (Kile et al. 1991). In ad-
dition, root diseases often affect canopy closure and create
small gaps. The effects of these root pathogens are persistent
on a site and have impacts on multiple generations of trees.
Armillaria and other root diseases influence forest species
composition, structure, and successional trajectories by
accelerating a transition to species that are more tolerant of
root disease or by maintaining stands of more susceptible
species in early-seral stages (Byler and Hagle 2000). They
can also affect ecosystem services by affecting visual and
recreational resources.

At least 3.3 million acres in the Northern Rockies have
moderate to severe root disease, with up to 60 percent
caused by Armillaria ostoyae (Smith 1984; USDA FS
2007). A recent evaluation of USFS Forest Inventory and
Analysis data in the Northern Region identified 2.3 million
acres of national forest lands with moderate to severe root
disease (Lockman et al., in preparation). Shrub fields have
replaced forest cover on 3 percent of forest lands in Idaho
and Montana as a result of severe root disease. A study
of Ecosection M333d (Bailey 1983), which includes the
southern Idaho Panhandle National Forest and southern
Kootenai National Forest, found evidence of root disease
on 94 percent of the area (Byler and Hagle 2000). Root
disease has reduced forest canopy cover in affected stands in
northern Idaho and western Montana by an average of 20 to
30 percent.

The National Insect and Disease Forest Risk Assessment
(Krist et al. 2014) identified locations where significant tree
mortality and basal area losses from insects and diseases
could occur between 2013 and 2027, modeling the potential
for damage in standing live basal area across all ownerships
from a variety of insects and pathogens. Root disease had
the highest basal area loss as a percentage of total basal
area; projected losses ranging from 0 to 20 percent in most
national forests.
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Needle Disease

Needle diseases have historically been of limited sig-
nificance in the Northern Rockies region; severe infection
years occur only occasionally, and effects are mostly limited
to crown thinning and loss of lower branches with some
mortality of young trees. Needle casts usually cause loss of
needles in the year following a season that has been favor-
able for infection. In western larch, needle cast and needle
blight are observed in the year of infection.

Needle casts and needle blights in lodgepole pine, pon-
derosa pine, western white pine, Douglas-fir, grand fir, and
western larch generally cause little damage in the Northern
Rockies region, although periodic outbreaks can cause
severe damage in local areas (Lockman and Hartless 2008).
These diseases are favored by long, mild, damp springs.
Their occurrence at epidemic levels depends on favor-
able weather conditions and presence of an adequate host
population.

Abiotic Disease

Most abiotic diseases result from the effects of adverse
environmental factors on tree physiology or structure. This
group of diseases can affect trees directly or interact with
biotic agents, including pathogens and insects. A number
of abiotic and environmental factors can affect foliage or
individual branches, or entire trees, tree physiology, and
overall tree vigor. The most significant abiotic damage is
tree mortality.

Forests in the Northern Rockies region are periodically
damaged by weather extremes, such as temperature and
drought. Factors such as air pollutants and nutrient extremes
occur infrequently or locally. An injury known as “red
belt,” caused by strong, dry, warm Chinook winds in winter
that induce twig and needle necrosis and desiccation, often
afflicts conifers on the east side of the Continental Divide,
primarily Douglas-fir and lodgepole pine (Bella and Navratil
1987). Drought injury, an abiotic factor that can cause
disease through loss of foliage and tree mortality, can initi-
ate a decline syndrome by predisposing trees with stressed
crowns and roots and low energy reserves to infection by
less aggressive biotic agents, such as canker fungi and sec-
ondary beetles. A well-studied decline of western white pine
called pole blight occurred in the Northern Rockies in the
1930s and 1940s (Leaphart and Stage 1971). This disease
occurred on pole-size trees, often in plantations that were
growing on shallow soils with low moisture storage capacity
that were exposed to extended drought.

Canker Disease

Canker diseases affect tree branches and boles, typically
in trees that are poorly adapted to the sites in which they
are growing. Damage is caused by breakage at the site of
the cankers, or by mortality of branches and boles beyond
girdling cankers. Although canker fungi are most active on
trees under stress, lack of specific data on climate effects
makes it difficult to infer the effects of climate change.
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Broad-Scale Climate Drivers of
Forest Diseases

Climatic variability and change can alter patterns of
pathogen distribution and abundance through (1) direct
effects on development and survival of a pathogen, (2) phys-
iological changes in tree defenses, and (3) indirect effects on
abundance of natural enemies, mutualists, and competitors
(Ayres and Lombardero 2000). Sturrock et al. (2011) sug-
gest that climate change will affect pathogens, hosts, and
their interaction; changes in these interactions may become
the most substantial drivers of future disease outbreaks.

Fungi cause most forest diseases in the Northern Rockies
region. Fungus life cycles are significantly influenced by
climate-related factors such as timing and duration of pre-
cipitation, humidity, and temperature for spore germination,
fungus growth, and inactivation. Fungus life cycles are short
compared to their hosts, so fungi can respond more rapidly
to a changing climate than their hosts, with potentially
serious consequences (Boland et al. 2004). Dwarf mistletoe
reproduction and infection are also affected by temperature
and moisture (Hawksworth and Wiens 1996), and dwarf
mistletoes are generally most prevalent in sites that have
undergone past disturbances.

Overall health of host trees has a major role in deter-
mining if a pathogen successfully infects a tree or kills it.
Many forest diseases, such as canker diseases, are caused
by “facultative pathogens” that attack weakened hosts
under specific environmental conditions. Impacts of climate
change on host physiology may modify host resistance and
alter stages and rates of development of pathogens (Coakley
et al. 1999). Drought, or limited soil moisture availability, is
a major driver that affects the incidence and severity of fac-
ultative pathogens. Soil moisture deficit, flooding, and water
table fluctuation can all predispose trees to pathogens. Even
if there are areas that may have a net gain in precipitation,
projected longer growing seasons could cause recurring wa-
ter deficit stress. Some diseases may be considered threshold
diseases; that is, they are damaging but only under certain

Table 8.7—Risk assessment for forest diseases.?
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climatic conditions (Hepting 1963). These diseases may
become more damaging if thresholds that trigger infections
are reached more frequently, such as in recurring drought.

Effects of Climate Change on
Forest Diseases

One of the difficulties of predicting sensitivity to a
changing climate is that the scales available for GCMs,
pathogen/disease models, and microsite environments
do not always match (Seem 2004). For example, some
GCM projections provide only mean monthly and annual
estimates, rather than daily data useful for modeling forest
diseases. In addition, pathogen ecology and effects are
sensitive to local site and environmental conditions that may
not be well represented by GCMs. There is also consider-
able uncertainty and lack of knowledge of impacts of a
changing climate on future forest conditions and interactions
with pathogens (Woods et al. 2005, 2010). Compared to
trees, for which available soil moisture is critical, pathogens
are affected more by precipitation events, especially timing,
duration, and pattern, all of which are poorly projected by
climate models. Facultative pathogens respond to weakened
or less vigorous hosts, and their importance could increase
if climatic conditions less favorable to tree growth become
more frequent.

A changing climate will affect forest disease occur-
rence and severity, through effects on the pathogen, the
host, or their interaction (Sturrock et al. 2011) (table 8.7).
Interactions between pathogens and abiotic stressors (e.g.,
temperature and moisture) may represent the most substan-
tial drivers of increased disease outbreaks (Sturrock 2012).
Epidemics also depend on relatively constrained conditions
for spread and infection to occur. For example, increased
drought could affect host susceptibility to pathogens and
predispose hosts to disease outbreaks (Coakley et al. 1999).
Although models usually generate mean climatic conditions,
it is often the extremes that have the greatest influence
on pest conditions (Hepting 1963). Increased host stress

Pathogen Direction Main driver(s) Projected duration Likelihood
component of change of change of change of change
Needle disease  Significant increase if Increased precipitation in May occur sporadically High

appropriate precipitation spring and early summer in association with

timing occurs weather events
Root disease Little change Host stress While hosts are Moderate

maladapted
Dwarf Could decrease mistletoe Temperature could influence  Unknown Low
mistletoe populations flowering and seed
production/dispersal

Abiotic disease  Significant increase Temperature and decreased Unknown High

precipitation

2 Developed using expert opinion and information from literature as summarized in this chapter.
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could result in increased disease occurrence and interac-
tions among multiple agents (Coakley et al. 1999). There is
likely to be an increase in declines and dieback syndromes
(Manion 1991) caused by changes in disease patterns in-
volving a variety of diseases.

A changing climate may indirectly affect competitors,
antagonists, and mutualists that interact with plant patho-
gens (Kliejunas et al. 2009). Some of the most profound
effects of temperature and moisture changes could be on soil
microflora, and on and in roots and shoots, where a complex
of organisms live in relationships at the transition between
pathogenesis, symbiosis, and saprogenesis. The balance
among organisms could be upset, for example, turning a
normal mycorrhizal association to pathogenesis, shifting
pathogens from saprogenic to pathogenic phases, or shifting
the order of ascendency of competing organisms due to their
different temperature or moisture optima; consequently a
pathogen might even take dominance from a saprophyte
(Hepting 1963). Given that root pathogens of trees can
often exploit a large food reserve in a tree once a defense is
breached and then use those reserves to bolster attacks on
nearby trees, even small changes in the frequency of shifts
in relationships among fungal communities could have large
effects.

Despite considerable knowledge about climatic condi-
tions required by specific forest pathogens, little has been
done to determine how changing climates may affect these
pathogens (Kliejunas et al. 2009). Recent modeling work by
Klopfenstein et al. (2009) used a subset of GCMs to project
how the geographic distribution of the climate envelope for
Armillaria solidipes and Douglas-fir could change in the
interior northwestern United States. Their analysis suggests
that Douglas-fir will have a considerably smaller geographic
space that matches its current climate envelope and that this
space will shift, whereas only minor changes are projected
for 4. solidipes. They suggest that areas where Douglas-fir
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is maladapted could increase, which could increase its sus-
ceptibility to Armillaria root disease.

Klopfenstein et al. (2009) used information for climatic
variables based on the current distribution of 4. solidipes
on its Douglas-fir host in a network of plots. Climate space
for A. solidipes modeled for current and 2060 climate are
shown in figure 8.12. These preliminary projections are not
necessarily the current or future distribution of 4. solidipes,
but identify only the modeled climate space matching
where the pathogen currently occurs. It is unknown how the
climate envelope could change because the distribution of
competitor fungi and hosts will change as well.

Spring precipitation is projected to increase in most of
the mountainous area of the Northern Rockies (see Chapter
3). This may increase frequency and severity of years when
needle diseases cause significant needle loss in conifer
species. This could affect the energy balance of susceptible
trees, with potential effects on yield and vigor, particularly
for species that normally carry multiple years of needles and
cannot re-flush later in the season in response to defoliation.

There may be elevation and location maladaptation in
resistance to the increased needle disease pressure result-
ing from climate change, as areas of tree host ranges and
disease occurrences shift in location. Lophodermella needle
cast in lodgepole pine (caused by Lophodermella concolor)
occurred in northern Idaho in the early 1980s (Hoff 1985),
and has also had outbreaks at high elevation in some Idaho
locations in recent years. Lodgepole pine at high elevation
normally has only infrequent outbreaks because bud break
occurs near or after the time when spring rains that favor
infection have ended, whereas needles in lower elevation
trees expand when spores are present and able to infect.

A provenance study under natural conditions during the
outbreak in the 1980s showed that low elevation populations
were generally more resistant and had heritable resistance,
but high elevation populations were susceptible. About 6

Figure 8.12—Modeled (a) current and (b) future (year 2060) climate space for Armillaria solidipes (Klopfenstein et al. 2009).
Colors represent the probability of occurrence. Yellow = moderate, red = high.
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percent of trees in this mixed provenance planting showed
no infection, but 5 percent had almost complete defoliation.
If moist conditions following bud break continue to occur

at high elevation where natural selection for resistance has
not occurred, recurrent needle disease outbreaks could stress
trees and make lodgepole pine more susceptible to other
factors (Hoff 1985).

Another example of a needle disease that may increase in
the Northern Rockies region under climate change is Swiss
needle cast (caused by Phaeocryptopus gaeumannii). This
disease severely limits productivity of Douglas-fir west
of the Cascade divide in Oregon and Washington, causing
growth losses of up to 50 percent (Manter et al. 2005).
Needle loss is very highly correlated with increasing winter
temperatures and spring needle wetness. The disease, which
is expected to become more severe in forests west of the
Cascade crest in a warmer climate (Stone et al. 2008), has
periods of local occurrence in northern Idaho (Navratil and
Bella 1988) and Montana (Weir 1917). Milder winters and
wetter springs that could increase the future distributions
and severity of the disease might occur, but as yet, investi-
gations and modeling have not been conducted to map and
quantify potential effects.

Kliejunas (2011) performed a qualitative risk assess-
ment of the effect of projected climate change on a number
of forest diseases, several of which occur in the Northern
Rockies. Dothistroma needle blight (caused by Dothistroma
septosporum) provides a good example of potential effects
of climate change. Kliejunas (2011) estimates that the risk
potential is low if a warmer and drier climate occurs. A
warmer and wetter climate could increase the risk potential
to moderate. His assessment of the effect of climate change
on dwarf mistletoes indicated a high risk potential regard-
less of precipitation levels because dwarf mistletoe survival
and infection increases with temperature. His assessment
of Armillaria root disease indicated a high to very high risk
potential depending on moisture availability, with drier
conditions increasing the potential.

Forest Pathogen Interactions

Direct effects of fire on pathogens are generally minimal.
Fire directly and indirectly influences distribution, severity,
and persistence of forest diseases; similarly, forest diseases
influence fire behavior and severity. Diseases are generally
host-specific, so removal of susceptible tree species by fire
will usually reduce disease, whereas improving habitat for
susceptible tree species will usually increase disease over
time.

Forest pathogens are directly damaged by smoke and heat
of fires. Smoke can inhibit dwarf mistletoe seed germination
(Zimmerman and Laven 1987), and heat from fire can kill
pathogens that cause root disease in the top 3 inches of soil
(Filip and Yang-Erve 1997). Forest diseases are affected more
by tree mortality from fire. Frequency and intensity of fire
can affect persistence, as well as distribution and severity of
certain diseases. High-intensity fires can completely remove a
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pathogen with its host, as with lodgepole pine-dwarf mistletoe
(Kipfmueller and Baker 1998; Zimmerman et al. 1990), or
remove species susceptible to root disease and prepare the
site for regeneration of less susceptible seral species, such as
pines and western larch (Hagle et al. 2000). Low-intensity
fires often leave mosaics of pathogens along with their
susceptible hosts, which can cause substantial increases of
diseases such as dwarf mistletoe (Kipfmueller and Baker
1998). However, low-intensity fires in some habitats maintain
species tolerant of root disease such as western larch (Hagle
et al. 2000).

Human-caused fire exclusion has led to an increase in root
disease and dwarf mistletoe (Hagle et al. 2000; Rippy et al.
2005), which can influence fire behavior and severity. Root
disease creates pockets of mortality and scattered mortality;
the resulting standing and down woody debris increases fuel
loading, especially large fuels (Fields 2003). Increased lit-
ter accumulation and resinous witches’ brooms from dwarf
mistletoe infections can provide ladder fuels that may cause a
ground fire to move into the canopy (Geils et al. 2002).

Climate effects that increase frequency or intensity of
fires may affect incidence and severity of dwarf mistletoes
(Zimmerman and Laven 1985). Fire affects dwarf mistletoes
by changing canopy structure and stand density (Alexander
and Hawksworth 1975; Dowding 1929); eliminating lower
branches, which may have the heaviest infections and
mistletoe seed production; thinning stem density, which may
reduce lateral spread; and causing mistletoe shoots to abscise.
Loss of shoots eliminates some infections directly, but even if
infections remain within the bark, loss of shoots prevents seed
production for several years, slowing mistletoe intensification
within stands. Trees heavily infested with mistletoe often
retain low infected branches and are prone to torching in
fire, which could increase the risk of crown fire (Conklin and
Geils 2008). Alternatively, torching in individual trees could
eliminate the most heavily infected sources of mistletoe seed
that infect understory regeneration.

An increase in severe weather events or fires could
increase occurrence of other diseases. For example, root and
bole wounds could be used as “infection courts” for root
disease, and such wounds from management, windfalls, and
fire are major avenues of infection for true firs and western
hemlock (Smith 1989) and lodgepole pine (Littke and Gara
1986). Fire damage and other stresses can release root dis-
ease infections that have been walled off by host resistance
responses (Hagle and Filip 2010). Relative importance of
different root diseases could be altered under some climate
change scenarios. Except as a sapling, western larch is con-
sidered resistant to Armillaria root disease due to its ability to
generate multiple corky barriers at infection sites (Robinson
and Morrison 2001). The response of this species to wounds
and the thick bark that it generates also make it among the
most resistant to fire damage, and a species more likely to
persist and regenerate under increased fire frequency.

Illustrating interactions between bark beetles and disease,
a study in lodgepole pine forests of central Oregon showed
that altered stand structure following an MPB epidemic
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increases dwarf mistletoe in lodgepole pine stands, thereby
reducing stand growth and productivity and slowing stand
recovery (Agne et al. 2014). The influence of dwarf mistletoe
on stand structure heterogeneity could increase landscape
resistance and resilience to disturbances. Another example
of complex interrelationships is the interaction between stem
decay, bark beetles, and fire frequency in central Oregon
lodgepole pine. After fire damaged the roots of lodgepole
pines, stem decay fungi infected these damaged roots and
over time caused extensive heartwood decay in the boles of
these trees. Data show these decay-infected trees grew at a
slower rate than uninfected trees and trees with stem decay
were preferentially attacked by MPB years later (Littke and
Gara 1986).

Nonnative Plants

Overview

Projecting how nonnative plants and climate change
may interact to alter native plant communities, ecosystems,
and the services they provide is challenging because of
our limited ability to project how climate change will alter
specific local abiotic conditions that define the fundamental
niches of plants (Gurevitch et al. 2011; Thuiller et al.

2008). We start with knowledge of structure and function

of current ecosystems, and then apply first principles of
ecology to explore how climate change might alter these
systems, their susceptibility to invasion, and invasiveness

of introduced plants from a general perspective. We do not
project changes in individual plant species, but define the
parameters that bound potential community change based on
climate projections and discuss how community invasibility
might be affected across that range of potential conditions.

Effects of Climate Change on
Nonnative Species

Hundreds of nonnative species have been introduced into
the Northern Rockies region (Rice n.d.). Not all of these
species are abundant, but recent surveys showed that nonna-
tive plants account for an average of 40 percent of species
present (richness), and 25 percent of those nonnatives have
significant effects on native grassland flora (Ortega and
Pearson 2005; Pearson et al. in review). Invasive plant spe-
cies represent a threat to ecosystem integrity because they
compete with native species in many plant communities
and can alter ecological processes. These negative impacts
can reduce biological diversity, forage for wildlife, and
recreation opportunities. Most nonnative invasive species
are herbaceous species (graminoids and forbs), but some
are shrub and tree species that commonly occur in riparian
areas (e.g., Russian olive [Elaeagnus angustifolia), tamarisk
[Tamarix ramosissimal).

Although extensive work has been done to understand
the biology of some of the most common nonnatives, such
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information is far from complete. Few studies have explored
how changes in temperature and moisture related to climate
change may affect nonnative plant populations in the
Northern Rockies region.

It has historically been assumed that climate change
will favor nonnative plants over native species (Dukes and
Mooney 1999; Thuiller et al. 2008; Vila et al. 2007; Walther
et al. 2009), but this may be an overgeneralization (Bradley
et al. 2009, 2010; Ortega et al. 2012). Numerous attributes
associated with successful invaders suggest nonnative spe-
cies could flourish under certain climate change scenarios.
For example, many nonnative plants are fast-growing
early-seral species (ruderals) that tend to respond favorably
to increased availability of resources, including temperature,
water, sunlight, and CO, (Milchunas and Lauenroth 1995;
Smith et al. 2000; Walther et al. 2009). Extensive work
shows that nonnative species respond favorably to distur-
bance (Zouhar et al. 2008), which can increase resource
availability (Davis et al. 2000). Nonnative species may also
exploit the disturbances associated with postfire conditions
better than many native species (Zouhar et al. 2008), despite
the adaptations of native plants to fire. In bunchgrass com-
munities, many nonnative plants recruit more strongly than
do native species when native vegetation is disturbed, even
under equal propagule availability (Maron et al. 2012).
Successful invaders also commonly have strong dispersal
strategies and shorter generation times, both of which can
allow them to migrate more quickly than slow-growing and
slowly dispersed species (Clements and Ditommaso 2011).
Greater plasticity of successful invaders could also favor
their survival in place and ability to expand their popula-
tions (Clements and Ditommaso 2011). Collectively, these
attributes suggest that many nonnative species would benefit
if climate change results in increased disturbance.

Few studies have manipulated CO,, moisture, or temper-
ature to quantify the effects of climate change on nonnative
versus native plants in the Northern Rockies region. Of
the work that does exist, most has targeted grassland and
sagebrush communities, presumably because these are
among the most susceptible to invasion (Forcella 1992; see
also Chapter 7). Experimentally increasing temperatures in
a Colorado meadow system resulted in increases in native
upland shrubs, with big sagebrush (Artemisia tridentata)
increasing in drier conditions and shrubby cinquefoil
(Dasiphora fruticosa) in wetter conditions (Harte and Shaw
1995). These different responses indicate the importance of
background moisture in driving species-specific responses
to elevated temperatures.

Recent experimental work in western Montana showed
that reduced precipitation can significantly impact spotted
knapweed (Centaurea melitensis), whereas native blue-
bunch wheatgrass (Pseudoroegneria spicata) populations
were unaffected by the same drought stress (Ortega et
al. 2012; Pearson et al., unpublished data). This result is
consistent with historical observations of spotted knap-
weed declines following drought conditions (Pearson and
Fletcher 2008). In Wyoming sagebrush-steppe systems,
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Table 8.8—Prominent nonnative species in the Northern Rockies and their primary habitats.

Species

Habitat

Cheatgrass (Bromus tectorum)

Spotted knapweed (Centaurea maculosa)
Rush skeletonweed (Chondrilla juncea)
Canada thistle (Cirsium arvense)
Houndstongue (Cynoglossum officinale)
Leafy spurge (Euphorbia esula)

Orange hawkweed (Hieracium aurantiacum)
Yellow hawkweed complex (Hieracium spp.)
St. Johnswort (Hypericum perforatum)
Dalmatian toadflax (Linaria dalmatica)
Yellow toadflax (Linaria vulgaris)

Sulfur cinquefoil (Potentilla recta)

Common tansy (Tanacetum vulgare)

Xeric shrublands and grasslands

Xeric shrublands and grasslands, dry forest openings
Xeric shrublands and grasslands

Wetland/riparian areas, disturbed sites in moist grasslands
Highly disturbed mesic and xeric grasslands, roadsides
Riparian areas, mesic and xeric grasslands

Forest openings, moist meadows, roadsides

Forest openings, roadsides

Xeric grasslands and shrublands

Xeric grasslands and shrublands

Mesic to xeric grasslands and shrublands, burned areas
Xeric grasslands and shrublands

Riparian areas

bluebunch wheatgrass outperformed both cheatgrass and
medusahead (Taeniatherum caput-medusae) in dry years,
but the opposite was true in wet years (Mangla et al. 2011).
Community-level studies in other grasslands have shown
that drought periods can shift vegetation away from annual
grasses and forbs and toward drought-tolerant native peren-
nial grasses (Tilman and El Haddi 1992). Hence, heating
and drying could favor drought-tolerant native species in
dry grassland and sagebrush systems and reduce their sus-
ceptibility to invasion by nonnative species (see Chapter 7).
However, these conditions might increase susceptibility of
native vegetation to invasive species in wetter locations.

Xeric Grasslands and Shrublands

Of the many dominant cover types that occur in the
Northern Rockies region, the most vulnerable to weed inva-
sion are typically those on warm, dry (xeric) sites, although
riparian and wetland sites can be invaded by several inva-
sive plant species. The most susceptible plant communities
tend to have low vegetation cover, high bare ground, and
unproductive soils; various nonnative plant species exploit
these more open sites. However, disturbances resulting from
fire or vegetation management can provide opportunities for
invasion in most kinds of dominant vegetation. Hundreds of
nonnative plant species occur in the Northern Rockies, the
most serious of which are described in table 8.8.

Xeric grasslands and shrublands are highly vulnerable to
establishment of nonnative species (see Chapter 7). Many of
the native plants in Northern Rockies grasslands are peren-
nials that tolerate environmental variability over long time
scales in contrast with the life history strategies of weedy
invasive species (Grime 1977; MacArthur and Wilson
1967). Whether native or nonnative species benefit, or more
specifically, which native or nonnative species benefit, will
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probably depend on the specific ways in which climate
change plays out.

If temperature increases but precipitation does not, this
will likely reduce resource availability and increase stress,
potentially favoring nonnative species. Projections of the
effects of climate change need to consider how nonnative
plants respond, as well as how recipient communities and
their invasibility may change. Many successful nonnative
species flower later and have different phenologies from
native species, allowing nonnative species to potentially
exploit an empty niche (Pearson et al. 2012). Therefore,
nonnative species may increase if this niche expands with
climate change, or decline if the niche is disrupted.

Invasive species primarily spread into disturbed areas
with sufficient bare ground and sunlight for germination
and establishment, although some species such as spotted
knapweed, houndstongue (Cynoglossum officinale), yellow
sweet clover (Melilotus officinalis), and yellow toadflax
(Linaria vulgaris) can readily establish in undisturbed
plant communities. Nonforested landscapes (e.g., shrub-
lands, grasslands) have been invaded in many areas of the
Northern Rockies region (see Chapter 7). As fires and other
disturbances increase in intensity and frequency, invasive
species can occupy and potentially dominate native plant
communities that were previously resistant to invasion,
although numerous factors such as fire resistance of native
species, propagule availability, and variation in burn sever-
ity can affect establishment (Zouhar et al. 2008). Native and
domestic livestock grazing and browsing of native species
can reduce plant vigor and open up sites for establishment
of invasive species. Silvicultural prescriptions that decrease
canopy cover also increase the likelihood that invasive spe-
cies may establish and increase in both cover and density,
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Table 8.9—Risk assessment for nonnative plant species.?
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Invasive species Direction Main driver(s) Likelihood
component of change of change of change
Area infested Variable by species, Altered temperature and precipitation High
from low to high patterns; increased atmospheric CO,;

altered fire regimes
Species response to High Increased fire frequency and severity, High
habitat disturbance which can increase the amount of habitat

vulnerable to nonnative invasion
Altered fire regimes High Increased fire frequency in areas with fire- High

tolerant and flammable invasive species
(e.g., cheatgrass-fire cycle)

@ Developed using expert opinion and information from literature as summarized in this chapter.

although subsequent succession may suppress those species
as canopy closure returns.

Climate change is likely to result in a range of responses
among invasive species, due to differences in their eco-
logical amplitude and life history strategies (table 8.9).
Bioclimatic envelope modeling indicates that climate
change could result in both range expansion and contrac-
tion for five widespread and dominant invasive plants in
the western United States. Yellow starthistle (Centaurea
solstitialis) and tamarisk are likely to expand, whereas leafy
spurge (Euphorbia esula) is likely to contract; cheatgrass
and spotted knapweed are likely to shift in range, leading to
both expansion and contraction (Bradley 2009; Bradley et
al. 2009). Invasive species are generally inherently adapt-
able and capable of relatively rapid genetic change, which
can enhance their ability to invade new areas in response to
ecosystem modifications (Clements and Ditomaso 2011),
including short-term disturbance (fire) or long-term stressors
(e.g., prolonged drought, increased temperatures, chronic
improper grazing). Increased concentrations of CO, in the
atmosphere have been shown to increase the growth of weed
species, which could have an influence on their invasiveness
(Ziska 2003).
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Chapter 9: Climate Change and Wildlife in
the Northern Rockies Region

Kevin S. McKelvey and Polly C. Buotte

How Climate Affects Wildlife

Temperature and moisture affect organisms through their
operational environment and the thin boundary layer im-
mediately above their tissues, and these effects are measured
at short time scales. When a human (a mammal) wearing
a dark insulative layer walks outdoors on a cold but sunny
day, he or she feels warm because energy from the sun is
interacting with the dark clothing, creating a warm boundary
layer to which his or her body reacts. Conditions beyond
that thin boundary layer are physiologically irrelevant. Walk
into the shade, and suddenly one is cold because the warm
boundary layer has been replaced with one at the ambient
temperature of the air. This example demonstrates many
factors to consider when evaluating the degree to which a
change in climate will affect an organism. Climate is defined
as the long-term average of temperature, precipitation, and
wind velocity. “Long term,” when applied to climate, is a
relative term and can refer to periods of weeks to centuries.
In the context of climate models, results are generally re-
ported as averages across 30-year intervals, which for many
animal species represent multiple generations. Our ability to
infer the biological effects of projected long-term changes
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Figure 9.1—Visual summary of workshop discussions on
the influence of climate on wildlife populations in the
Northern Rockies Adaptation Partnership. Pathways
of climate influence (black) interact with population
characteristics (blue) to affect the future population status
(red). A given pathway affects multiple species, and
multiple pathways affect a given species.

USDA Forest Service RMRS-GTR-374. 2018

in temperature and precipitation relies both on our ability

to directly relate these multiyear averages to biological
responses, and the trophic distance between climate-induced
ecological change and its effects on specific biological
relationships.

As just noted, a human’s response to change in radi-
ant energy is fast, measured in seconds to minutes, so
its relation to 30-year average temperature is obscure.
Climate changes the frequency of weather events, which
in turn change the frequency of nearly instantaneous shifts
in boundary layer conditions around one’s body. In ag-
gregate, these changes in frequency lead to conditions that
an individual either can navigate and tolerate—or cannot.
This is further complicated for endotherms (warm-blooded
animals), which maintain a constant body temperature. Cold
or excessive heat affects endotherms by requiring them
to burn more calories to maintain the required core tem-
perature. Thus, endotherms can function in a wide variety
of environmental conditions if they have enough food to
supply the necessary energy. Fish, reptiles, and amphibians
are ectotherms (cold-blooded organisms), which react to the
cold not by feeling cold and metabolizing energy to main-
tain core temperature, but by having their metabolism slow
until they are torpid.

Many of the species described here occupy terrestrial
habitats. Terrestrial organisms can manipulate their opera-
tional environment in a myriad of ways, choosing to stand in
the sun or shade, moving uphill or down, changing aspect,
or seeking cooler or warmer environments by digging into
a burrow in the ground or under the snow. Endothermic
animals can change the thickness of the boundary layer by
modifying their hair or feathers, both seasonally and on a
short-term basis, thus responding to variable thermal condi-
tions while minimizing energy expenditures. The ability of
terrestrial organisms to manipulate their operational environ-
ment contrasts with aquatic organisms, which have a harder
time avoiding adverse temperatures because water is an
excellent conductor of heat. In addition, aquatic ectotherms
have no way to avoid overheating when water temperatures
rise, so it is more straightforward to evaluate the effects of
climate change for fish with known warm-water limits than it
is for terrestrial endotherms (see Chapter 5).

Terrestrial endotherms are more likely to experience ef-
fects associated with changes in precipitation amounts and
types than effects associated with changes in temperature.
These species have less flexibility in dealing with changes
in precipitation patterns than with changes in temperature

353



CHAPTER 9:

CLIMATE CHANGE AND WILDLIFE IN THE NORTHERN ROCKIES REGION

Figure 9.2—Canada lynx (a) have snow-specific adaptations (oversized feet, long legs, and a thin, light skeleton), and snowshoe
hares (b) dominate their diets. Snowshoe hares undergo seasonal pelage changes from brown to white, and the effectiveness
of this strategy depends on synchrony with snow cover. A mismatch between the hare’s fur color and its environment would
make it more vulnerable to predation by lynx (photo (a): U.S. Fish and Wildlife Service; (b) photo: L. Scott Mills, used with
permission).

because water produces physical features that serve as habi-
tat for which they are specifically adapted. In the Northern
Rockies region, and in other areas with cold winters, snow
provides physical habitat for which a number of organisms
have specific adaptations. An obvious adaptation is seasonal
color change in pelage: being white in a snowy landscape
enhances the likelihood of escaping detection if the animal
is prey, and approaching prey if the animal is a predator.
Therefore, white pelage in winter confers specific fitness
advantages if pelage change is properly timed to coincide
with snow cover. But it is a disadvantage if mistimed (see
discussion of snowshoe hare [Lepus americanus] later in
this chapter) (fig. 9.2). Specific morphological features such
as oversized feet, long legs, and light bone structures also
provide benefits in snow-covered landscapes but may be
disadvantageous in environments without snow.

Deep snow provides a relatively warm, stable environ-
ment at the interface between snow and soil; soils in areas
characterized by deep snow generally remain above freezing
throughout the winter (Edwards et al. 2007), and the sub-
nivean environment (beneath the snow surface) is used by
many organisms to den or feed. For organisms that depend
on a stable subnivean environment or that have specific
phenological adaptations to snow, reduced snowpack caused
by a shift in precipitation from snow to rain represents a
loss of critical habitat (see later discussion of American pika
[Ochotona princeps]). Similarly, water bodies are the physi-
cal habitats for a wide variety of animals, providing sources
of prey, temperature control, and safety from predation. In
addition, open or flowing water can provide important mi-
croclimates. For example, pikas can be found in what appear
to be hot, dry environments if water flow beneath the talus
produces cool microsites (Millar and Westfall 2010a).

Physical features associated with snow and water inte-
grate across longer time periods and are therefore closely
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associated with projected climate. For example, depth of
snowpack integrates seasonal moisture and temperature.
Seeps, springs, bogs, and persi